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Round of introductions...

I ...And you?
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Ensemble streamflow forecasting
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Some basics: Why Forecasting?

https://ici.radio-
canada.ca/nouvelle/1032244/inondations-
degradation-precipitations-pluie-quebec-
rivieres-niveau-eau

http://ici.radio-
canada.ca/nouvelle/516710/richelieu-
inondations-monteregie

from [5]
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Some basics: Simulation vs forecasting

I A (hydrological) model
includes inputs, outputs,
fluxes and state variables

I It also contains
equations, with free,
initially undetermined
parameters
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Sources of uncertainty
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Verification

(Source for the figure:
https://pixabay.com/photos/goodbadoppositechoicechoose-1123013/)
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Verification

I Sharpness and reliability

I Sharpness: ”concentration of the predictive distributions and
is a property of the forecasts only. The more concentrated the
predictive distributions are, the sharper the forecasts, and the
sharper the better, subject to [reliability]” [13]

I Reliability: ”refers to the statistical consistency between the
distributional forecasts and the observations and is a joint
property of the predictions and the observed values.” [13]

The predictive confidence intervals must be in agreement with
their definition. E.g. The 95% confidence interval should
include, on average, 95% of the observations.
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Verification

I Continuous Ranked Probability Score [19]

CRPS(F , y) =

∫ ∞

∞
(F (t)− H(x ≥ y))2dx (1)

I F: Forecast (cumulative distribution function)

I y: observation

I x: streamflow values

I H: Heavyside function

I For an ensemble of M members:

CRPS(x , y) =
1

M

M∑
i=1

|xi − y | − 1

2M2

M∑
i=1

M∑
j=1

|xi − xj | (2)

I This reduces to the Mean Absolute Error (MAE) for deterministic
forecasts (M = 1)
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Verification

https://www.met-
learning.eu/pluginfile.php/5277/mod resource/content/6/www/english/msg/
ver prob forec/uos3b/uos3b ko1.htm

I Logarithmic (or ignorance) score [14]

ign(f , y) = − log(f (y)) (3)

18 / 77



Verification
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Verification

I Reliability diagram [33]
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Data Assimilation

I A (hydrological) model
includes inputs, outputs,
fluxes and state variables

I It also contains
equations, with free,
initially undetermined
parameters
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Data Assimilation

Distinction between calibration, post-processing and DA:

I Calibration: Obtaining values for the free parameters that
provide good results on average, over a long period.

I Post-processing: statistically correcting the model output a
posteriori so that it is more in agreement with the
observation(s).

I DA: Updating the state variables (and sometimes
parameters...) at time t0, just before issuing a forecast for the
next N days.
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Data Assimilation
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Data Assimilation

I Compromise between the model simulation (”background”)
and the observations

I Many variants exist!
I Direct insertion: the forecaster trusts the observations entirely
I Manual data assimilation
I Ensemble Kalman filter
I Variational DA
I Particle filter
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Data Assimilation

Manual, expert-judgement based DA

I The most widespread method among operational agencies

I Pros
I Very simple to understand and to implement!

I Cons
I Hardly reproducible
I Not systematic: highly dependant on individual forecaster’s

knowledge and experience
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Data Assimilation

Manual, expert-judgement based DA

1. Add noise to the model’s input(s) for the last T days before
t0

I Additive or multiplicative
I There are guidelines / rules of thumb

2. Re-run the model, to compute new state variables

3. Check (visually or using a numeric criteria) that the simulated
flow from T to t0 matches the observed flow better than the
open loop simulation.

4. Better? Leave it like that, proceed with forecasting

5. Not better? Worst? Try again!
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Data Assimilation

Basic Principles

I Based on Bayes theorem:

p(H|E ) =
p(E |H)p(H)

p(E )
(4)

I H: A hypothesis (here regarding the state of the model)

I E : Event (here, streamflow observations)
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Data Assimilation

(Modified from [29])
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Pre- and Post-processing

I Modified from SEAS5
ensemble forecasts over the
Kénogami Lake watershed
(Quebec, Canada)

I Initally biased and under
dispersed
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Pre- and Post-processing

It is important to get the traces right! Problematic example for
seasonal hydrological forecasts for Lake Kénogami (Canada)
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Ens. streamflow forecasting: wrap-up

We have discussed:

I Some definitions: simulation vs forecast,
calibration vs data assimilation, etc.

I Sources of uncertainty

I Verification: CRPS, logarithmic score,
reliability diagram

I Data Assimilation: basic ideas

I Pre- and Post-processing: basic ideas
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Ens. streamflow forecasting: wrap-up

We have not yet discussed:

I Structural uncertainty

I Seamless forecasting and how long-term
forecasts are different than short-term forecasts

I Data Assimilation: details of popular methods

I Pre- and Post-processing: details of popular
methods + is is better to pre- or post-process?

I Forecasts communication and use for flood
mitigation

I ...
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Hydropower
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What’s next?
Ensemble streamflow forecasting

First, some basics!
Sources of uncertainty
Verification
Data Assimilation
Pre- and Post-processing

Hydropower
Basics
Hydropower optimization

Decision making process
Uncertainty
Reservoir optimization
Short-term optimization
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Hydropower

Canadian Hydropower Association, 2019.[4]

I In Canada, 63% of the
total energy is produced
with hydropower

I In the province of
Québec, 97% of the
energy is produced with
hydropower

I Hydropower is a clean
and renewable energy
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Hydropower system

An hydropower system is constituted of multiple power plants:

Each power plant contains one or
more turbines

37 / 77



Power plants: two types

Reservoir

Alaindg, 2007.[30]

Run-of-the-river

Iguanebobo, 2010.[31]
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Power plant
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Turbine

Florival fr, 2010.[32]
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Power production

I Water is brought to the turbine by the penstock.

I The turbine turns with the force of water and the mechanical
energy is transformed in electrical energy with the alternator.

I The power produced depends on two variables: the water
flowing through the turbine and the net water head.

I For run-of-the-river plants, power produced is usually
dependent only on water flow.
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Power production
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Tailrace elevation

I The water flow is processed
by the turbines.

I The water then moves to H.

I The tailrace elevation varies.

I Which in turn, varies the net
water head.

I The tailarce elevation is a
function of the total water
discharge.
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Power production

Power produced by a single turbine is given by:

P = ((hf − ht(Qtot))− energy losses)× µ(Q)× Q, (5)

where
hf is the forebay elevation, ht the tailrace elevation, Qtot the total
water discharge, Q the unit water discharge and µ the efficiency.
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Hydropower optimization
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Hydropower optimization

The goal of hydropower optimization is to manage efficiently the
hydropower system.
On an operational basis, daily decisions must be taken:

I The net water head (or volume)

I The water discharge

I The turbines working
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Other considerations

Besides power production itself, other considerations need to be
accounted for when making decisions.

I Efficiency

I Turbine startups

I Uncertainty
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The decision making process

In practice, medium term and short term optimization models are
used.

I Medium term or reservoir optimization. Estimate the
quantity of water available for production. Determine
reservoir trajectories based on water travel times between
plants, reservoir levels, natural inflows uncertainty.

I Short term. Dispatch the water available between the
turbines and the plants.
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Optimization

Optimization seeks to minimize a cost function or maximize a
profit by finding the optimal value of x (decision variable):

min cT x

s.t. Ax ≤ b,

x ≥ 0.
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Optimization

Optimization seeks to minimize a cost function or maximize a
profit by finding the optimal value of x (decision variable):

Objective function

s.t.

Constraints
Bounds
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Objective function

Usual objective functions:

I Maximize energy production

I Minimize operation costs

I Maximize profits

I Minimize efficiency losses
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Constraints and considerations

I Water conservation

vk+1 = vk − qk − sk + δk
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Constraints and considerations

I Boats, beaches (bounds on water flows, volumes)

I Energy demand

I Turbine startups

I Flooding

I Environmental constraints

I Uncertainty
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Uncertainty
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Uncertainty

In the context of hydropower, uncertainty arises from:

I Inflows

A. Vicente, U.S. Forest Service[28]
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Uncertainty

I Prices

EPEX SPOT SE, 2019.[9]
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Uncertainty

In the province of Québec, since the electricity market is owned
and operated by Hydro-Québec, producers negociate fixed price
contracts.
The only uncertainty that we consider in our models is related to
the inflows.
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Stochastic optimization

I Stochastic optimization methods solve problems which contain
uncertain parameters at the moment of taking a decision.

I Reservoir optimization (medium term) and short term
optimization use different methods to solve stochastic
problems.
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Reservoir optimization (medium term)

I Weekly decisions on yearly horizons

I Total water discharge and reservoir volumes

I Uncertain inflows

I Turbines are aggregated

Commons algorithms:

I Stochastic dynamic programming (SDP)

I Stochsatic dual dynamic programming (SDDP)

I Sampling stochastic dynamic programming (SSDP)
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Dynamic programming (DP)

I Separates a complex problem into sub-problems (stages)

I Is based on the Bellman optimality principle: An optimal
policy has the property that watever the initial state and
initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first
decision [1]

I Stochastic dynamic programming: extension of DP
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Stochastic Dynamic Programming (SDP)

Many discretizations are required:

I Stages: time periods

I State variables: reservoir storage

I Decision variables: water discharge

I Random inflows: Required to calculate the transition
probabilities (markov process) between each discrete inflow.
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SDP

We maximize the expected energy production.
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Short-term optimization

I Hourly decisions on weekly horizons

I Result: Water discharges, reservoir volumes and turbines
working

I Uncertain inflows

Common algorithms:

I Linear and nonlinear programming

I Integer programming

I Stochastic programming
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Inflows

From the forecasting team, we receive multiple inflow scenarios.
Their number is too large for the stochastic program.
An approximation, with a scenario tree, is then required.

Day
0 5 10 15 20 25 30

In
flo

w
 (

%
)

0

14

29

43

57

71

86

100

Séguin et al., 2017[23]
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Model

Example of a short-term stochastic problem:

Séguin et al., 2017.[24]
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Stochastic programming

The scenario tree, which is a discrete representation of the
distribution of inflows, is then used to solve the
deterministic-equivalent of the stochastic program.

Y.-Y. Chen and H.-Y. Fan, 2015.[6]
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Stochastic programming

The model maximizes first stage decisions (no uncertainty), the
expectancy of future production (second stage) and the expected
value of water remaining in the reservoirs.

max
q,v

χ(v1, q1, δ1)+
∑
j∈K

πj

∑
i∈Nj

χ(vi , qi , δi )

+
∑
t∈K

πt

∑
p∈Et

Φp(vp)



s.t. δi = vi+1 − vi + qi , ∀i ∈ Nj , ∀j ∈ K ,

vmin ≤ vi ≤ vmax , ∀i ∈ N,

qmin ≤ qi ≤ qmax , ∀i ∈ N,

vi , qi ≥ 0 , ∀i ∈ N,

From mid-term
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Rolling horizon scheme

The stochastic solution provides optimal policies: for each
scenario, the solution varies. Rolling horizon schemes are used to
”build” the solution.

Adapted from Séguin et al. 2017 [23]
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Short term optimization

Example of results:

Séguin et al., 2017[23]
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Recap...

Hydropower scheduling is complex and requires many interactions:

I Hydrologists, statisticians: inflow scenarios

I Operations research: mathematical formulations

I Programmers: implementation of the models

I Analysts & engineers: Final decision

It is a rich and various field to study and/or work in!
Do not hesitate to contact me: sara.seguin@uqac.ca
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SOME RESOURCES TO GO
FURTHER
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