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Ensemble Forecast
Applications Presented

* Truckee/Carson River basin
(Seasonal streamflow forecast)
* Gunnison River Basin
(Multi-site seasonal streamflow forecast)
* Downscaling
(1~2 week time scale)



Single-site Ensemble Streamflow
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Motivation

* US Bureau of Reclamation (USBR) searching for an
Improved forecasting model for the Truckee and
Carson Rivers (accurate and with long-lead time)

* Forecasts determine reservoir
releases and diversions

* Protection of
listed species




Outline of Approach

Climate
Diagnostics

Forecasting

Model

Decision
Support System

* Climate Diagnostics

To identify relevant predictors to
spring runoff in the basins

* Forecasting Model

Nonparametric stochastic model
conditioned on climate indices and
snow water equivalent

* Decision Support System

Couple forecast with DSS to
demonstrate utility of forecast



Data Used

* 1949-2003 monthly data sets:

* Natural Streamflow (Farad & Ft.
Churchill gaging stations)

*Snow Water Equivalent (SWE)- basin
average

*Large-Scale Climate Variables



Winter Climate Correlations

Carson Spring Flow
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Fall Climate Correlations

Carson Spring Flow
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Physical Mechanism

* \Winds rotate
counter-
clockwise
around area of
low pressure
bringing warm,
moist air to

mountains In

e VVestern US




Climate Predictors

* Use areas of highest correlation to develop
Indices to be used as predictors in the
forecasting model

* Area averages of geopotential height and SST




Outline of Approach

Climate * Climate Diagnostics

Diagnostics To identify relevant predictors to spring
runoff in the basins

_ » Forecasting Model
Forecasting

Model Nonparametric stochastic model
conditioned on climate indices
and SWE

Decision * Decision Support System
Support System Couple forecast with DSS to

demonstrate utility of forecast



The Ensemble Forecast Problem

* Ensemble Forecast/Scenarios generation —
all of them are conaditional probability density
function problems

* Estimate conditional PDF and simulate
(Monte Carlo, or Bootstrap)

Y = f(X) + error

* K-NN Approach is Used



K-NN Philosophy

Find K-nearest neighbors to the desired point x

Resample the K historical neighbors (with high
probability to the nearest neighbor and low probability
to the farthest) > Ensembles

Weighted average of the neighbors - Mean Forecast

Fit a polynomial to the neighbors - Weighted Least
Sguares

® |Jse the fit to estimate the function at the desired
point x (i.e. local regression)

Number ofi neighbors K and the order of polynomial pis
obtained using GCV (Generalized Cross Validation) - K
=N and p =1 > Linear modeling framework.

The residuals within the neighberhooed can be
resampled for providing uncertainity estimates /
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Calkulated February Matural Flow {ac-ftiyr)
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Model VValidation & Skill Measure

* Cross-validation: drop one year from the model and
forecast the “unknown” value

(1998}

* Compare median of forecasted vs. observed (obtain “r
value)

* Rank Probability Skill Score

1 i i RPS(forecast)
__ _ I RPSS=1-——————
RPS(p,d) = k_l[Z@ R ;dnﬂ ‘ RPS(climatology)

k
i1

* Likelihood Skill Score




Forecasting Results

Median RPSS (all years)
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Multi-Site Ensemble Streamflow




Key issues
°* Hydro power generatio

* Recovery flows for
endangered habitat

* Reserved water rights
* Timing of flows protection ¢

* Majority of the
precipitation is SNOW

* Snow driven spring
flows

L1 11 ]

g mm




Methodology
* Principal Component Analysis (PCA)

* Select the dominant Principal Components
and treat them as independent variables



Results

* First PC explained
most of the variance ~
87 %

* |Loading of the eigen
vector are uniform

* Predictors identified by
correlating PC1-spring
flows with large scale
climate patterns

Individual variance

Principal Component Mumber

Loadings of Eigen Vector




PC1 Flows Vs. Winter Climate
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* Estimation of GCV for each combination

Multi Models

* Selection of the models within 20% of the
least GCV (Regonda et al., 2005)

* Elimination of the models

Model

GCV

SAT

GPH

MW

Z\N

SST

PDSI

PC1
SWE

Variz

2.074

10

2.138




Forecast (Multi model Ensemble)

2. Bootstrap other than dominant PCs and create
complete PC matrix

3. Back transform PC values into flow values at
multi sites

4. Post Processor

e Selects models from multi models based on
GCV weight

* Bootstraps the scenarios from the selected
models
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Dry years
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Wet years
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RPSS

e RPSS estimated for six
gage locations |
e Increased skill observed

with decrease In lead
time

—&— Climate —— Climate + SWE




K-NN Downscaling




Downscaling Concept

Climate Model
Grid Scale ] ]
Horizontal resolution

GOM ~ 200 km

RCM T

Topography ' = Hydrological [scale mis-match]
Vegetation ' i Processes

>

Aggregation

Precipitati unI

Soils ==
y l

Area of interest
— 500 to 2000 km?

Purpose: Downscale global-scale atmospheric forecasts to local
scales in river basins (e.g., individual stations).




Downscaling Approach

|dentify outputs from the global-scale Numerical Weather Prediction
(NWP) model that are related to precipitation and temperature in the
basins of interest

Geo-potential height, wind, humidity at five pressure levels etc.
Various surface flux variables

Computed variables such as vorticity advection, stabilitiy indices,
etc.

Variables lagged to account for temporal phase errors in
atmospheric forecasts.

Use NWP outputs in a statistical model to estimate precipitation and
temperature for the basins

Multiple linear regression

K-nn

NWS bias-correction methodology
Local polynomial regression
Canonical Correlation Analysis
Artificial Neural Networks



Multiple Linear Regression (MLR) Approach

Multiple linear Regression with forward selection
Y=a,+a,X1+a,X2+a,X3...+aXn+e

Use cross-validation procedures for variable selection — typically less than 8
variables are selected for a given equation

A separate equation is developed for each station, each forecast lead time, and
each month.

Stochastic modeling of the residuals in the regression equation is done to
provide ensemble time series

The ensemble members are subsequently shuffled to reconstruct the observed
spatio-temporal covariability:

Regression coefficients are estimated from the period of the NCEP 1998 MRF
hindcast (1979-2001)



K-nn Approach - Methodology

 Get all the NCEP MRF output variables within a 14 day window (7
days, lag+lead) centered on the current day

Perform EOF analysis of the climate variables and retain the first few
leading Pcs, that capture most of the variance
~6 Pcs capture about 90% of the variance

*The PC space leading Pcs becomes the “feature vector”

*Project the forecast climate variable of the current day on to the PC
space — I.e. The “feature vector”

o Select the “nearest” neighbor to the “feature vector” in the PC space
— hence, a day from the historical record.



Snowmelt
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Results

e RPSS - precipitation and maximum temperature, MLR and KNN
Ranked Probability Skill Score (RPSS) = 1 — RPSS;/ RPSS,

 Spatial autocorrelation — precip, max temp, MLR and KNN



Knn Approach — RPSS, PRCP-Jan

FRCF January
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Knn Approach — RPSS, PRCP-July

PRCP July
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Knn Approach — RPSS, TMAX-Jan

TMAX January
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Knn Approach — Spatial Cor., cosrsacoisos
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Knn Approach — RPSS, TMAX-Jul

TMAX July
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Knn Approach — Spatial Cor., caco-cazzss
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) Summary

. K-NN method exhibits comparable to better skills than the MLR in
downscaling daily precipitation/temperature

. The K-NN provides a flexible and parsimonious framework for
downscaling.

.The K-NN approach can be improved to better capture the temporal
dependence and also to generate sequences not seen in history.



Application to Decision Support

System




Outline of Approach

Climate * Climate Diagnostics

Diagnostics To identify relevant predictors to spring
runoff in the basins

* Forecasting Model

Forecastin
9 Nonparametric stochastic model
Model conditioned on climate indices and SWE

» Decision Support System

Couple forecast with DSS to
demonstrate utility of forecast

Decision

Support System



Seasonal Decision Support System

* Method to test the utility of the forecasts
and the role they play in decision
making

* Model implements major policies Iin
lower basin (Newlands Project OCAP)

* Seasonal time step



Seasonal Model Policies

® Use Carson water first
* Max canal diversions: 164 kaf

® Storage targets on Lahontan Reservoir: 2/3
of historical April-July runoff volume

* No minimum fish flows (release from
upstream reservoir to combat low flows)



Decision Model Flowchart

Ensemble
Forecasts
Truckee Forecast

/ N\

Is Truckee Forecast Is Carson Forecast
> Max Diversion ? > Lahontan Target ?

xis Nc:/
Truckee Avail for Diversion Truckee Avail for Diversion Diversion Requested Diversion Requested
= Truckee Forecast = Max Diversion = Target — Carson Forecast = 0.0 kaf

Is Avail for Diversion
> Diversion Request?

Repeat for each
ensemble member

Truckee Canal Diversion Truckee Canal Diversion
= Avail for Diversion = Diversion Requested

Water Available for Fish Water Available for Irrigation
= Truckee Fcst — Truckee Canal Diversion = Carson Fcst + Truckee Canal Diversion




Decision VVariables

* Lahontan Storage Available
for Irrigation

* Truckee River Water Available
for Fish

* Diversion through the Truckee
Canal




Decision
Model
Results
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Dry Year: 1994
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Wet Year
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Normal Year: 2003
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Exceedance Probabilities

1994 (Dry Year)

Feb 1st

Dec 1st

Historical

Irrigation Water mean value (kaf)

161

214

264

264 kaf Irrigation Water exceedance probability

14%

18%

50%

Fish Flow mean value (kaf)

42

39

199

60.5 kaf Fish Flow exceedance probability

57%

98%

87%

Canal Diversion mean value (kaf)
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84

1993 (Wet Year)
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Irrigation Water mean value (kaf)
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2003 (Normal Year)
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Irrigation Water mean value (kaf)
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Summary & Conclusions

* Climate indicators improve forecasts and
offer longer lead time

* Water managers can utilize the improved
forecasts in operations and seasonal
planning
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