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Ensemble Forecast
Applications Presented

•• Truckee/Carson River basinTruckee/Carson River basin
(Seasonal (Seasonal streamflowstreamflow forecast)forecast)

•• Gunnison River BasinGunnison River Basin
(Multi(Multi--site seasonal site seasonal streamflowstreamflow forecast)forecast)

•• DownscalingDownscaling
(1~2 week time scale)(1~2 week time scale)



Single-site Ensemble Streamflow

Grantz et al. (2005, WRR)
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Motivation

•• US Bureau of Reclamation (USBR) searching for an US Bureau of Reclamation (USBR) searching for an 
improved forecasting model for the Truckee and improved forecasting model for the Truckee and 
Carson Rivers (accurate and with longCarson Rivers (accurate and with long--lead time)lead time)

Truckee Canal

•• Forecasts determine reservoir Forecasts determine reservoir 
releases and diversions releases and diversions 

•• Protection of Protection of 
listed specieslisted species

Cui-ui

Lahontan Cutthroat Trout



Outline of Approach

Climate
Diagnostics
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Diagnostics
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Model

Forecasting
Model
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Support System

Decision
Support System

•• Forecasting ModelForecasting Model
Nonparametric stochastic model Nonparametric stochastic model 
conditioned on climate indices and conditioned on climate indices and 
snow water equivalentsnow water equivalent

•• Climate DiagnosticsClimate Diagnostics
To identify relevant predictors to To identify relevant predictors to 
spring runoff in the basinsspring runoff in the basins

•• Decision Support SystemDecision Support System
Couple forecast with DSS to Couple forecast with DSS to 
demonstrate utility of forecastdemonstrate utility of forecast



Data Used

•• 19491949--2003 monthly data sets:2003 monthly data sets:
•Natural Streamflow (Farad & Ft. 

Churchill gaging stations)
•Snow Water Equivalent (SWE)- basin 

average
•Large-Scale Climate Variables



Winter Climate Correlations
Carson Spring Flow

500mb Geopotential Height Sea Surface Temperature



Fall Climate Correlations
Carson Spring Flow

500mb Geopotential Height Sea Surface Temperature



Physical Mechanism

L
•• Winds rotate Winds rotate 

countercounter--
clockwise clockwise 
around area of around area of 
low pressure low pressure 
bringing warm, bringing warm, 
moist air to moist air to 
mountains in mountains in 
Western USWestern US



Climate Predictors
•• Use areas of highest correlation to develop Use areas of highest correlation to develop 

indices to be used as predictors in the indices to be used as predictors in the 
forecasting model  forecasting model  

•• Area averages of geopotential height and SST Area averages of geopotential height and SST 

500 mb Geopotential Height Sea Surface Temperature
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Decision
Support System

Forecasting ModelForecasting Model
Nonparametric stochastic model Nonparametric stochastic model 
conditioned on climate indices conditioned on climate indices 
and SWEand SWE

•• Climate DiagnosticsClimate Diagnostics
To identify relevant predictors to spring To identify relevant predictors to spring 
runoff in the basinsrunoff in the basins

•• Decision Support SystemDecision Support System
Couple forecast with DSS to Couple forecast with DSS to 
demonstrate utility of forecastdemonstrate utility of forecast



The Ensemble Forecast Problem

•• Ensemble Forecast/Scenarios generation Ensemble Forecast/Scenarios generation ––
all of them are all of them are conditional probability density conditional probability density 
function problemsfunction problems

•• Estimate conditional Estimate conditional PDF PDF and simulate and simulate 
(Monte Carlo, or Bootstrap)(Monte Carlo, or Bootstrap)

Y  =  Y  =  f(Xf(X) + error) + error

•• KK--NN Approach is UsedNN Approach is Used



K-NN Philosophy

•• Find KFind K--nearest neighbors to the desired point nearest neighbors to the desired point xx
•• Resample the K historical neighbors (with high Resample the K historical neighbors (with high 

probability to the nearest neighbor and low probability probability to the nearest neighbor and low probability 
to the farthest) to the farthest) EnsemblesEnsembles

•• Weighted average of the neighbors Weighted average of the neighbors Mean ForecastMean Forecast
•• Fit a polynomial to the neighbors Fit a polynomial to the neighbors –– Weighted Least Weighted Least 

SquaresSquares
•• Use the fit to estimate the function at the desired Use the fit to estimate the function at the desired 

point point x x (i.e. (i.e. local regressionlocal regression))
•• Number of neighbors K and the order of polynomial p is Number of neighbors K and the order of polynomial p is 

obtained using GCV (Generalized Cross Validation) obtained using GCV (Generalized Cross Validation) –– K K 
= N  and p = 1 = N  and p = 1 Linear modeling framework.Linear modeling framework.

•• The residuals within the neighborhood can be The residuals within the neighborhood can be 
resampledresampled for providing for providing uncertainityuncertainity estimates / estimates / 
ensemblesensembles



K-NN Local Polynomial



Residual Resampling

yt-1

yt*
et*

yt = yt
* + et

*



Model Validation & Skill Measure

•• CrossCross--validation:  drop one year from the model and validation:  drop one year from the model and 
forecast the forecast the ““unknownunknown”” valuevalue

•• Compare median of forecasted vs. observed (obtain Compare median of forecasted vs. observed (obtain ““rr””
value)value)

•• Rank Probability Skill ScoreRank Probability Skill Score

•• Likelihood Skill ScoreLikelihood Skill Score
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Forecasting Results
Truckee RPSS results
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Carson RPSS results
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Truckee Forecasted vs. Observed Correlation 
Coeff
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Carson Forecasted vs. Observed
 Correlation Coeff
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Truckee Likelihood Results
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Carson Likelihood Results
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Multi-Site Ensemble Streamflow

(Regonda et al. 2005, in 
submission to WRR)



Gunnison River Basin
Key issuesKey issues
•• Hydro power generationHydro power generation
•• Recovery flows for Recovery flows for 

endangered habitatendangered habitat
•• Reserved water rightsReserved water rights
•• Timing of flowsTiming of flows

Gage location

Colorado

•• Majority of the Majority of the 
precipitation is SNOWprecipitation is SNOW

•• Snow driven spring Snow driven spring 
flowsflows



Methodology
•• Principal Component Analysis (PCA)Principal Component Analysis (PCA)
•• Select the dominant Principal Components Select the dominant Principal Components 

and treat them as independent variablesand treat them as independent variables
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Results 
•• First PC explained First PC explained 

most of the variance  ~ most of the variance  ~ 
87%87%

•• Loading of the Loading of the eigeneigen
vector are uniform vector are uniform 

•• Predictors identified by Predictors identified by 
correlating PC1correlating PC1--spring spring 
flows with large scale flows with large scale 
climate patternsclimate patterns



PC1 Flows Vs. Winter Climate

Zonal
Wind

SST

GPH SAT



Vector Winds 
Wet years Dry years



Multi Models
•• Estimation of GCV for each combinationEstimation of GCV for each combination
•• Selection of the models within 20% of the Selection of the models within 20% of the 

least GCV (Regonda et al., 2005)least GCV (Regonda et al., 2005)
•• Elimination of the modelsElimination of the models

ModelModel
##

GCVGCV SATSAT GPHGPH MWMW ZWZW SSTSST PDSIPDSI PC1 PC1 
SWESWE

# # 
VariaVaria

11 22

22

11

33

22

22

44

55

1010

2.0282.028 00 00 00 00 00 00 11

2.0452.045 00 00 00 00 00 00 00 11 00 00 11

2.0742.074 00 00 00 00 00 00 00 00 00 00 11

2.0792.079 00 00 00 11 00 00 00 11 00 00 11

2.1382.138 00 00 00 00 00 00 00 00 00 11 11

00 00 00 11



Forecast (Multi model Ensemble)
2.2. Bootstrap other than dominant PCs and create Bootstrap other than dominant PCs and create 

complete PC matrixcomplete PC matrix
3.3. Back transform PC values into flow values at Back transform PC values into flow values at 

multi sitesmulti sites

4.4. Post ProcessorPost Processor
•• Selects models from multi models based on Selects models from multi models based on 

GCV weightGCV weight
•• Bootstraps the scenarios from the selected Bootstraps the scenarios from the selected 

modelsmodels
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All years

Apr 1st
0.80

0.59Jan 1st



Dry years

Apr 1st
0.96

0.44Jan 1st



Wet years

Apr 1st
0.99

0.88Jan 1st



RPSS All years
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with decrease in lead 
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K-NN Downscaling
Gangopadhyay et al. (2005, WRR)



Downscaling Concept

Horizontal resolution
~ 200 km

Area of interest
~500 to 2000 km2

[scale mis-match]

•• Purpose:  Downscale globalPurpose:  Downscale global--scale atmospheric forecasts to local scale atmospheric forecasts to local 
scales in river basins (e.g., individual stations).scales in river basins (e.g., individual stations).



Downscaling Approach

•• Identify outputs from the globalIdentify outputs from the global--scale Numerical Weather Prediction scale Numerical Weather Prediction 
(NWP) model that are related to precipitation and temperature in(NWP) model that are related to precipitation and temperature in the the 
basins of interestbasins of interest

•• GeoGeo--potential height, wind,  humidity at five pressure levels etc.potential height, wind,  humidity at five pressure levels etc.
•• Various surface flux variablesVarious surface flux variables
•• Computed variables such as Computed variables such as vorticityvorticity advection, advection, stabilitiystabilitiy indices, indices, 

etc.etc.
•• Variables lagged to account for temporal phase errors in Variables lagged to account for temporal phase errors in 

atmospheric forecasts.atmospheric forecasts.

•• Use NWP outputs in a statistical model to estimate precipitationUse NWP outputs in a statistical model to estimate precipitation and and 
temperature for the basinstemperature for the basins

•• Multiple linear regressionMultiple linear regression
•• KK--nnnn
•• NWS biasNWS bias--correction methodologycorrection methodology
•• Local polynomial regressionLocal polynomial regression
•• Canonical Correlation AnalysisCanonical Correlation Analysis
•• Artificial Neural NetworksArtificial Neural Networks



Multiple Linear Regression (MLR) Approach

•• Multiple linear Regression with forward selectionMultiple linear Regression with forward selection
Y = aY = a00 + a+ a11X1 + aX1 + a22X2 + aX2 + a33X3 . . . + X3 . . . + aannXnXn + e+ e

•• Use crossUse cross--validation procedures for variable selection validation procedures for variable selection –– typically less than 8 typically less than 8 
variables are selected for a given equationvariables are selected for a given equation

•• A separate equation is developed for each station, each forecastA separate equation is developed for each station, each forecast lead time, and lead time, and 
each month.each month.

•• Stochastic Stochastic modelingmodeling of the residuals in the regression equation is done to of the residuals in the regression equation is done to 
provide ensemble time seriesprovide ensemble time series

•• The ensemble members are subsequently shuffled to reconstruct thThe ensemble members are subsequently shuffled to reconstruct the observed e observed 
spatiospatio--temporal temporal covariabilitycovariability

•• Regression coefficients are estimated from the period of the NCERegression coefficients are estimated from the period of the NCEP 1998 MRF   P 1998 MRF   
hindcasthindcast (1979(1979--2001)2001)



K-nn Approach - Methodology

• Get all the NCEP MRF output variables within a 14 day window (7
days, lag+lead) centered on the current day

•Perform EOF analysis of the climate variables and retain the first few 
leading Pcs, that capture most of the variance

•~6 Pcs capture about 90% of the variance

•The PC space leading Pcs becomes the “feature vector”

•Project the forecast climate variable of the current day on to the PC 
space – i.e. The “feature vector”

• Select the “nearest” neighbor to the “feature vector” in the PC space 
– hence, a day from the historical record.
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Results

• RPSS – precipitation and maximum temperature, MLR and KNN
Ranked Probability Skill Score (RPSS) = 1 – RPSSf / RPSSc

• Spatial autocorrelation – precip, max temp, MLR and KNN



Knn Approach – RPSS, PRCP-Jan



Knn Approach – RPSS, PRCP-July



Knn Approach – RPSS, TMAX-Jan



Knn Approach – Spatial Cor., CO4734-CO1609



Knn Approach – RPSS, TMAX-Jul



Knn Approach – Spatial Cor., GA0140-GA2266



Summary

• K-NN method exhibits comparable to better skills than the MLR in 
downscaling daily precipitation/temperature

• The K-NN provides a flexible and parsimonious framework for 
downscaling.

•The K-NN approach can be improved to better capture the temporal 
dependence and also to generate sequences not seen in history.



Application to Decision Support 
System

(Grantz al. 2005, 
submitted to ASCE J. WRPM)
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•• Forecasting ModelForecasting Model
Nonparametric stochastic model Nonparametric stochastic model 
conditioned on climate indices and SWEconditioned on climate indices and SWE

•• Climate DiagnosticsClimate Diagnostics
To identify relevant predictors to spring To identify relevant predictors to spring 
runoff in the basinsrunoff in the basins

Decision Support SystemDecision Support System
Couple forecast with DSS to Couple forecast with DSS to 
demonstrate utility of forecastdemonstrate utility of forecast



Seasonal Decision Support System

•• Method to test the utility of the forecasts Method to test the utility of the forecasts 
and the role they play in decision and the role they play in decision 
makingmaking

•• Model implements major policies in Model implements major policies in 
lower basin (lower basin (NewlandsNewlands Project OCAP)Project OCAP)

•• Seasonal time stepSeasonal time step



Seasonal Model Policies

•• Use Carson water firstUse Carson water first
•• Max canal diversions: 164 Max canal diversions: 164 kafkaf
•• Storage targets on Storage targets on LahontanLahontan Reservoir: 2/3 Reservoir: 2/3 

of historical Aprilof historical April--July runoff volumeJuly runoff volume
•• No minimum fish flows (release from No minimum fish flows (release from 

upstream reservoir to combat low flows)upstream reservoir to combat low flows)



Decision Model Flowchart

Truckee Forecast

Truckee Avail for Diversion
= Truckee Forecast

Carson Forecast

Is Truckee Forecast 
> Max Diversion ?

Ensemble 
Forecasts

Truckee Canal Diversion
= Avail for Diversion

Water Available for Fish 
= Truckee Fcst – Truckee Canal Diversion

Water Available for Irrigation
= Carson Fcst + Truckee Canal Diversion

No Yes

Is Avail for Diversion
> Diversion Request? 

Truckee Avail for Diversion
= Max Diversion

Is Carson Forecast
> Lahontan Target ?

Diversion Requested 
= Target – Carson Forecast

Diversion Requested
= 0.0 kaf

No Yes

No Yes

Truckee Canal Diversion
= Diversion Requested

Repeat for each 
ensemble member



Decision Variables
•• LahontanLahontan Storage Available Storage Available 

for Irrigationfor Irrigation

•• Truckee River Water Available Truckee River Water Available 
for Fishfor Fish

•• Diversion through the Truckee Diversion through the Truckee 
CanalCanal



Decision 
Model 
Results
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Dec 1st Forecast
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Feb 1st Forecast
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Dry Year:  1994
April 1st February 1st December 1st

Truckee ForecastTruckee Forecast

Carson ForecastCarson Forecast

Storage for IrrigationStorage for Irrigation

Canal DiversionCanal Diversion

Water for FishWater for Fish



Wet Year:  1993
April 1st February 1st December 1st

Truckee ForecastTruckee Forecast

Carson ForecastCarson Forecast

Storage for IrrigationStorage for Irrigation

Canal DiversionCanal Diversion

Water for FishWater for Fish



Normal Year:  2003
April 1st February 1st December 1st

Truckee ForecastTruckee Forecast

Carson ForecastCarson Forecast

Storage for IrrigationStorage for Irrigation

Canal DiversionCanal Diversion

Water for FishWater for Fish



Exceedance Probabilities 
1994  (Dry Year) Apr 1st Feb 1st Dec 1st Historical
Irrigation Water mean value (kaf) 94 161 214 264
264 kaf Irrigation Water exceedance probability 4% 14% 18% 50%
Fish Flow mean value (kaf) 0 42 39 199
60.5 kaf Fish Flow exceedance probability 0% 57% 58% 87%
Canal Diversion mean value (kaf) 52 107 121 84

1993  (Wet Year) Apr 1st Feb 1st Dec 1st Historical
Irrigation Water mean value (kaf) 291 332 246 264
264 kaf Irrigation Water exceedance probability 73% 73% 31% 50%
Fish Flow mean value (kaf) 452 391 138 199
60.5 kaf Fish Flow exceedance probability 100% 99% 81% 87%
Canal Diversion mean value (kaf) 8 29 101 84

2003  (Normal Year) Apr 1st Feb 1st Dec 1st Historical
Irrigation Water mean value (kaf) 261 268 225 264
264 kaf Irrigation Water exceedance probability 40% 49% 26% 50%
Fish Flow mean value (kaf) 76 223 71 199
60.5 kaf Fish Flow exceedance probability 61% 91% 69% 87%
Canal Diversion mean value (kaf) 126 106 108 84



Summary & Conclusions
•• Climate indicators improve forecasts and Climate indicators improve forecasts and 

offer longer lead timeoffer longer lead time
•• Water managers can utilize the improved Water managers can utilize the improved 

forecasts in operations and seasonal forecasts in operations and seasonal 
planningplanning
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