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Use of NWP output to produce forecasts of streamflow

1. NWP hindcast
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Statistical downscaling...

Simple regression analysis...

NCEP MRF output used as explanatory variables to predict
1) POP

2) Precipitation Amounts

3) Temperature

Error obtained through cross-validation
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Extract ensemble members from these CDFs
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Example Results: Animas River Basin (Southwest Colorado)
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Clark and Hay (2004) — Journal of Hydrometeorology
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Example Results: Cle Elum River Basin (Central Washington)
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Model solutions to the streamflow forecasting problem

istorical Data
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«——Past Future ——
Probabillistic treatment of meteorological forecasts, BUT
all other components are entirely deterministic

(e.g., assumes no uncertainty in snowpack simulation)
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Current research foci \

/>
e Characterize uncertainty in hydrologic model ‘

simulation

= Uncertainty in model inputs Runoff
o Probabilistic quantitative precipitation estimation X Statlon Y
on

= Uncertainty in model parameter choice and model
structure
o (rely on the work others)

= ...leading to estimate of uncertainty in model states
and fluxes ...and uncertainty in initial conditions

 Reduce uncertainty in modeled hydrologic states
= Probabilistic snow estimation from station data
= Ensemble snow data assimilation methods
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Uncertainties in model inputs
‘Study area (Col oradoiiiounitains) .
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Uncertainties in model inputs (method)

Estimate precipitation [\
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(2-km grid—150 x 150 pixels)
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Uncertainties in model inputs (method)
PCP

(?-km arid—150 x 150 pixels)
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Error Estimation

: : O O
e Cross Validation
. O

= Use other data to estimate value \
= Compare Estimate to ¢ — 5
= Repeat for all stations
» Interpolate station error estimates to high- O

resolution model grid

O

« Effectively combines errors due to
= Measurement error

= Representativeness error
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POP & PCP

e Location: Colorado
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* Applied Logistic &
OLS regression
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Uncertainties in model inputs (method)

(2-km grid—150 x 150 pixels)

Estimate precipitation
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Uncertainties in model inputs (method)

Estimate precipitation
CDF at each grid cell

Synthesize ensembles
from the CDF

-0.25 0.25 1.0 5.0 -50 -=-1.0 -0.25 0.25 1.0 5.0

Rondom Numbers = N[0,1] — Ensemble 3

n 50 -5 0

-5.0 =10 -0.25 0.25 1.0 5.0 50 =10
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2. Use the cumulative probability that corresponds to the
random deviate to extract values from the estimated

CDFs at each grid cell
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Example forcing grids—two ensembles
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March 2003 “ Storm of the Century”
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Current research foci

e Characterize uncertainty in hydrologic model
simulation
= Uncertainty in model inputs
0 Probabilistic quantitative precipitation estimation

= Uncertainty in model parameter choice and model
structure

o (rely on the work of others)

= ...leading to estimate of uncertainty in model states
and fluxes ...and uncertainty in initial conditions

« |[Reduce uncertainty in modeled hydrologic states
= Probabilistic snow estimation from station data
= Ensemble snow data assimilation methods
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Assimilation of satellite SCA information

e EXxperiments with a “toy” model
= Temperature index snow model
= Conceptual series of soll reservoirs

* Applied to the middle Boulder Creek at Nederland
= Closest unregulated basin to the Clark residence

Clark Residence
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Errors in model parameter choice

 Monte Carlo Markov Chains
= 100 chains (ensemble members) = 100 parameter sets

 Randomly couple each parameter set with each forcing ensemble
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...uncertainty du

e to forcing plus parameters

Straarnflow [cofe)
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[ensemble streamflow simulations at Middle Boulder Creek]
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Application—subgrid SWE parameterization

Accumulation Case Accumulation Case
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= Model framework of Luce et al., 1999; Liston, 2004

= Variability in SWE determined by total accumulation and
coefficient of variability parameter

= Melt assumed to be constant over the grid cell
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Application—subgrid SWE parameterization

Accumulation Case

Accumulation Case
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ldentical twin experiments—SCA assimilation

 One-dimensional EnKF—SCA used to update the sub-grid distribution of SWE
as well as the basin water balance (augment state vector with CV parameter)

e One model ensemble member assumed to be “truth”
e The “truth” ensemble is used to update all other model ensembles

Fractinnol SCA (Cantral)

Fracticnal SCA (Assimilation) Fracticnal SCA (p.d.fs)
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e “Observed SCA” is lower than the model ensemble
« Variability parameter increased; more SWE variability = more ground exposed

Za

C | B E 5@ CIRES University of Colorado

Hydro-Climate Research
and Decision Making




ldentical twin experiments—SCA assimilation

Similar updates to other  ,~{if Q
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SCA assimilation: Summary results

Mean Ensemble Varignce
1 1 1 1 1 1 1 1 1 1 1

70|

e 1200 synthetic water years

e Small improvement near the
end of the melt season
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e Limitations on the use of SCA
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Information: N

= A significant amount of melt NP P AN A S
may occur before any bare  RMSE Egsemble Mean
ground is exposed -

= The transition between 100% s

snow cover and 0% snow
cover may occur rather quickly

RMSE (cfs)

* What is “significant” and what is N
“quick” will be basin dependent OND U FMAMY I AS
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Summary of research to date

istorical Data ‘)
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«——Past Future ——

1. Developed methods to incorporate weather forecasts and
climate outlooks in operational hydrologic forecast systems

2. Developing methods for probabilistic hydrologic model
simulations and land data assimilation
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Future Work

* Probabillistic view of land surface / hydrologic modeling

» Include structural and parameter uncertainty

* Produce forcing ensembles for land surface models

» Physical consistency across variables
= Combination of Model Output & Station + Radar Observations

« Use satellites to improve spatially explicit SWE
observations

* Horizontal Propagation
= Test in areas where satellite and/or ground based observations are poor

« Ultimately, evaluate applications of probabilistic modeling
and data assimilation for ensemble streamflow forecasting
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The End

(thank you)

http://sciencepolicy.colorado.edu/hydroclimate/




