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1.  NWP hindcast

Clark and Hay (2004) – Journal of Hydrometeorology

Use of NWP output to produce forecasts of streamflow

scale
mis-match

2.  Statistical downscaling and ensemble synthesis

3.  Hydrologic modeling
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Statistical downscaling…

Temperature Precipitation

Simple regression analysis…
NCEP MRF output used as explanatory variables to predict
1) POP
2) Precipitation Amounts
3) Temperature
Error obtained through cross-validation

Extract ensemble members from these CDFs
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January Precipitation Amounts—Day 0
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Example Results: Animas River Basin (Southwest Colorado)

Clark and Hay (2004) – Journal of Hydrometeorology

Forecasts based on
NWP model output

Forecasts based on
historical data
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Example Results:  Cle Elum River Basin (Central Washington) 

Forecasts based on
NWP model output

Forecasts based on
historical data

Clark and Hay (2004) – Journal of Hydrometeorology
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Historical Simulation

Q

SWE
SM

Historical Data Forecasts

Past Future

SNOW-17 / SAC SNOW-17 / SAC

Probabilistic treatment of meteorological forecasts, BUT
all other components are entirely deterministic

(e.g., assumes no uncertainty in snowpack simulation)

ASSUME NO UNCERTAINTY

Model solutions to the streamflow forecasting problem
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Current research foci
• Characterize uncertainty in hydrologic model 

simulation
Uncertainty in model inputs

o Probabilistic quantitative precipitation estimation
Uncertainty in model parameter choice and model 
structure

o (rely on the work others)
…leading to estimate of uncertainty in model states 
and fluxes …and uncertainty in initial conditions

• Reduce uncertainty in modeled hydrologic states
Probabilistic snow estimation from station data
Ensemble snow data assimilation methods
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Uncertainties in model inputs

BoulderBoulder

AspenAspen

Study area (Colorado mountains)
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Uncertainties in model inputs (method)
(2-km grid—150 x 150 pixels)

Estimate precipitation
CDF at each grid cell

Synthesize ensembles
from the CDF

Precipitation
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Uncertainties in model inputs (method)
(2-km grid—150 x 150 pixels)

Estimate precipitation
CDF at each grid cell

Synthesize ensembles
from the CDF

Precipitation
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(logistic regression)
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Error Estimation

• Cross Validation

Use other data to estimate value

Compare Estimate to Observation

Repeat for all stations

Interpolate station error estimates to high-
resolution model grid

• Effectively combines errors due to

Measurement error

Representativeness error
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POP & PCP

• Location: Colorado

• Spatial fields of 
POP and Precip. 
(in Z-space)

• Applied Logistic & 
OLS regression

• All estimates are 
locally-weighted

Clark & Slater, Submitted
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Uncertainties in model inputs (method)
(2-km grid—150 x 150 pixels)

Estimate precipitation
CDF at each grid cell

Synthesize ensembles
from the CDF

Precipitation
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1-POP
(logistic regression)

Conditional CDF
(ord. least squares)
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Uncertainties in model inputs (method)

Estimate precipitation
CDF at each grid cell

Synthesize ensembles
from the CDF

1. Construct spatially correlated fields of random numbers

2. Use the cumulative probability that corresponds to the 
random deviate to extract values from the estimated 
CDFs at each grid cell
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Example forcing grids—two ensembles

Time

Total Precipitation (mm)
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March 2003 “Storm of the Century”

Clark Residence
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Current research foci
• Characterize uncertainty in hydrologic model 

simulation
Uncertainty in model inputs

o Probabilistic quantitative precipitation estimation
Uncertainty in model parameter choice and model 
structure

o (rely on the work of others)
…leading to estimate of uncertainty in model states 
and fluxes …and uncertainty in initial conditions

• Reduce uncertainty in modeled hydrologic states
Probabilistic snow estimation from station data
Ensemble snow data assimilation methods
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Assimilation of satellite SCA information
• Experiments with a “toy” model

Temperature index snow model
Conceptual series of soil reservoirs

• Applied to the middle Boulder Creek at Nederland
Closest unregulated basin to the Clark residence

x

Clark Residence
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Errors in model parameter choice
• Monte Carlo Markov Chains

100 chains (ensemble members) = 100 parameter sets
• Randomly couple each parameter set with each forcing ensemble
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…uncertainty due to forcing plus parameters

[ensemble streamflow simulations at Middle Boulder Creek]
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Application—subgrid SWE parameterization

Model framework of Luce et al., 1999; Liston, 2004

Variability in SWE determined by total accumulation and
coefficient of variability parameter

Melt assumed to be constant over the grid cell
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Application—subgrid SWE parameterization
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Identical twin experiments—SCA assimilation
• One-dimensional EnKF—SCA used to update the sub-grid distribution of SWE

as well as the basin water balance (augment state vector with CV parameter)
• One model ensemble member assumed to be “truth”
• The “truth” ensemble is used to update all other model ensembles

• “Observed SCA” is lower than the model ensemble
• Variability parameter increased; more SWE variability = more ground exposed 



CIRES       University of Colorado

Identical twin experiments—SCA assimilation
Similar updates to other 
model state variables

…with subsequent effects 
on streamflow simulation
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SCA assimilation:  Summary results
• 1200 synthetic water years
• Small improvement near the 

end of the melt season

• Limitations on the use of SCA 
information:

A significant amount of melt 
may occur before any bare 
ground is exposed
The transition between 100% 
snow cover and 0% snow 
cover may occur rather quickly

• What is “significant” and what is 
“quick” will be basin dependent
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Historical Simulation

Q

SWE
SM

Historical Data Forecasts

Past Future

SNOW-17 / SAC SNOW-17 / SAC

Summary of research to date

1. Developed methods to incorporate weather forecasts and 
climate outlooks in operational hydrologic forecast systems

2. Developing methods for probabilistic hydrologic model 
simulations and land data assimilation
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Future Work
• Probabilistic view of land surface / hydrologic modeling

Include structural and parameter uncertainty

• Produce forcing ensembles for land surface models 
Physical consistency across variables
Combination of Model Output & Station + Radar Observations

• Use satellites to improve spatially explicit SWE 
observations

• Horizontal Propagation
Test in areas where satellite and/or ground based observations are poor

• Ultimately, evaluate applications of probabilistic modeling 
and data assimilation for ensemble streamflow forecasting



The End

CIRES                 University of Colorado

http://sciencepolicy.colorado.edu/hydroclimate/

(thank you)


