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Introduction

Ensemble meteorological forecasts are often uncalibrated (bias, underdispersion); this is the case for
the forecasts from Environment Canada (EC). To calibrate such forecasts, we use the Bayesian Model
Averaging (BMA) method proposed by [3]. In the present work, this method is applied to minimum
and maximum temperature forecasts from EC, for different forecast ranges and all seasons.

BMA method

BMA method applied to forecast ensembles

If we have a data ensemble of K forecasts {f1, ..., fK} coming from K models {M1, . . . , MK}, then
the probability density functions (PDF) of the predicted variable y can be written this way:

p (y|f1, ..., fK) =

K∑

k=1

wk gk (y|fk) (1)

where wk is the weight of the model Mk and gk (y|fk) is the conditional PDF of y, given that fk is
the best forecast in the ensemble.

Choice of the distribution for y

• When the predicted variable y is the temperature, it is reasonable to assume that

y | fk ∼ N
(

fk, σ
2
k

)

= gk (y|fk)

• The expectation of y given the forecasts is

E (y|f1, ..., fK) =

K∑

k=1

wk fk

Variance decomposition

The variance asociated with the BMA predictive PDF (1) can be decomposed as

Var (y|f1, . . . , fK) =

K∑

k=1

wk



fk −

K∑

i=1

wi fi
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︸ ︷︷ ︸
= between-forecast variance

+

K∑

k=1

wk σ2
k

︸ ︷︷ ︸
= within-forecast variance

(2)

Estimating the variance using only the first term of (2) yields to underestimated variance.

Estimation

General considerations

• The forecasts are corrected by a simple linear regression: yt = ak + bkfkt + εkt. The corrected
forecasts are then: f̃kt = âk + b̂kfkt.

• We estimate the weights wk and the variances σ2
k by the maximum likelihood method.

• We use the EM algorithm (see [1]), defining the“missing data” zkt = 1 if the member k is the best
forecast for the day t, and 0 otherwise.

• Let ẑ
(0)
kt

, w
(0)
k

and σ
2(0)
k

be the initial values of the unknown zkt, wk and σ2
k. The estimates at the

jth iteration are given below.

Step E Step M

ẑ
(j)
kt

=
wk gk

(

yt|f̃kt, σ
(j−1)
k

)

K∑

i=1

wi gi

(

yt|f̃it, σ
(j−1)
i

)
w

(j)
k

=
1

n

∑

t

ẑ
(j)
kt

and σ
2(j)
k

=

∑

t

ẑ
(j)
kt

(

yt − f̃kt

)2

∑

t

ẑ
(j)
kt

Data ensemble

• Global Environmental Multi-scale model (GEM) from Environment Canada

• 8 members and the official forecast for a total of 9 members

• Forecasts on the daily maximum temperature and the daily minimum temperature (maximum and
minimum of 8 values)

• Grid point: (6, 2) (see map in [2])

• Forecast range: k = 0 to 9 days

• Data from April 2002 to November 2003 (7 seasons)

• Definition of seasons

Spring: April, May, June Summer: July, August and September
Fall: October, November Winter: December, January, February, March

• The analyses using the BMA method concern

– linear corrected forecasts with distinct slopes bk and variances σ2
k

– linear corrected forecasts with unit slope (bk = 1) and homogeneous variance (σ2
k = σ2)
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Conclusions and further work

• Members #6 and #8 perform better for short forecast ranges, while member #9 (deterministic
forecast) performs better for long forecast ranges.

• The results shown here for linear bias-corrected forecasts with slope 1 and homogeneous variances
(bk = 1, σ2

k = σ2) are not very different from the more general case. We then suggest to use the
more parcimonious model.

• The BMA method can be used to calibrate other meteorological variables such as precipitations.
However the method should be adapted as the normal distribution is no more appropriate.

• Finally, note that the BMA method supposes the independence of the member forecasts, while these
forecasts are often correlated. Additional investigations are needed in order to relax this hypothesis.
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