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Uncertainty in Numerical Modeling

1. Model Structure
Parameterizations
Piecing together components
Numerical methods

2. Model Forcing
Spatial & Temporal structure

3. Parameter Data
Soils & Vegetation, type and distribution

4. Initial Conditions
Influences trajectory (forecasting = IVP)
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Snow Assimilation & Hydro Forecasting

• Snowpack has big impact
• Sub-optimal data cover

• Aim :  best estimate of SWE initial conditions
for streamflow prediction by combining
models & observations

• Research philosophy
Calibration solves low frequency variability
Assimilation aids high frequency variability
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Data Assimilation : Ensemble Kalman Filter

1.  Xt
- = AXt-1 + Bft

2.  Kt = PtHT(HPtHT + R)-1

3.  Xt = Xt
- + Kt (zt – HXt

-)

1. Project model state (X) forward 
as a function of last model state 
(AXt-1) and the forcing (Bft)

2. Compute a Kalman Gain (K) from 
covariances (P) of transformed 
(H) model data and observation 
variance (R) across ensemble

3. Update the model states using 
the gain and observations (z)
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Stochastic SNOW-17 Simulations

• SNOW-17
Anderson (1973) 
Conceptual model – needs only Temp. + Precip.
Runs operationally @ the NWS
Parameters : CBRFC operational code
Calibrated for streamflow, not SWE
Nine state variables used

• Model forced with ensemble of inputs
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Uncertainties in model inputs (method)
(2-km grid—150 x 150 pixels)

1-POP
(logistic regression)

Conditional CDF
(ord. least squares)

Precipitation
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Occurrence:
βnew = βold + (XTWVX)–1 XTW(Y-π)

Amounts:
β = (XTWX)–1 XTWY

Clark & Slater, (2005)

Need estimate of 
Precip. and Temp. at 
each basin/box/point

PLUS

Error estimate
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POP & PCP

• Location: Colorado

• Applied Logistic & 
OLS regression

• All estimates are 
locally-weighted

• SWE computed 
similarly

• Temp uses OLS

Clark & Slater, (2005)
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Obtaining Assimilation Data

• 1D EnKF needs data everywhere
• Convert SWEobs to Z-score
• Interpolate & cross validate
• Get SWEmod via model hindcast
• Model-space, unbiased value

U

U
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Obtaining “Truth”

• Model-space equivalent of observed SWE
• Match the non-zero SWE CDF’s
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53 Upper C.R.B.  SNOTEL Stations
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Example: Lake Eldora (forcing)

Obs IQR   Total
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Example: Kiln (forcing)

Obs IQR   Total
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Rank Probability of Temperature (All Stations)
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EnKF Sample Results

Slater & Clark, (2005)

Interpolated SWE 
Mean & Std. Dev

Model

Truth
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White without Red = B.L.U.E

• SWE contains red (time correlated) noise
• Only want to use “new” information
• Example – assimilate at same timestep 
• Filter Divergence = potential problem

Slater & Clark, (2005)
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Final Assimilation Results
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Requirement : new & better information
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Conclusions – Snow Data Assimilation

• Analysis superior to Model or Observations

• Correlation structure removed

• Only one area of uncertainty covered so far

• Limited data sources, so far

• Model rebalanced for forecasting 

• Improves short term forecasting 

• Operational capabilities!



The End

Thank You
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