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SCOPE

This presentation aims at showing how
Hydrological models of vastly different
nature (from the Deterministic to the
Data Driven ones), used in Flood Forecasting, 
can be reconciled in terms of

Predictive Probability



For many years, hydrologists have debated 
on the appropriateness of using Data Driven
models as opposed to Conceptual or 
Physically Based models for Flood 
Forecasting and, in particular, for Real Time 
Flood Forecasting. 

THE HYDROLOGICAL DEBATE



In 1983 Klemes advocated ways of combining 
both approaches in order to capitalize on the 
greater accuracy of the Data Driven models 
as well as on the larger forecasting stability 
provided by the Physically Based models.

THE HYDROLOGICAL DEBATE

Klemes, V. K., 1983. Conceptualization and scale in hydrology, J. Hydrol., 65,1-23



In 1999 Krzysztofowicz with his “Bayesian 
theory of probabilistic forecasting via 
deterministic hydrologic models” opened the 
main streams of Bayesian post-processors, 
followed, more recently by Raftery et al. 
2003, who introduced the Bayesian Model 
Averaging.

THE BAYESIAN PROCESSORS

Krzysztofowicz, R., 1999. Bayesian theory of probabilistic forecasting via 
deterministic hydrologic model. Water Resour. Res., 35, 2739–2750.

Raftery, A. E., F. Balabdaoui, T. Gneiting, and M. Polakowski, 2003. Using 
Bayesian model averaging to calibrate forecast ensembles, Tech. Rep. 440, 

Dep. of Stat., Univ. of Wash., Seattle.



It is the ambition of this presentation to 
introduce a new post-processing approach 
which will allow to generalise the 
Krzysztofowicz results to multi-models of 
different nature, and, at the same time, to 
simplify the computational requirements of 
the  Raftery’s Bayesian Model Averaging 
processor.

A NEW APPROACH



From the Physically Based Models
Such as:
• the Système Hydrologique Européen (SHE)
• the SHETRAN and MIKE-SHE
• the LISFLOOD model
• the TIN-based Real-time Integrated Basin Simulator (tRIBS)
• the TOPographic KInematic wave APproximation and Integration   
(TOPKAPI)
• etc.



To the ANN Models



k

Or the DB Mechanistic Models

Procedure:
• Step 1: classical linear or non-linear black-box model
• Step 2: physical interpretation of resulting model
• Step 3: acceptance if good, parsimonious and  physically  meaningful 
•. . .

Young, P. C., 2001. Data-based mechanistic modelling and validation of rainfall-flow 
processes. In: Model Validation: Perspectives in Hydrological Science, M.G.

Anderson and P.D. Bates, (Eds.) Wiley, Chichester, UK.  117-161.



In general, flood emergency decisions are 
taken without perfect knowledge of what will 
happen next in the future.

Operational flood forecasting systems use 
hydro-meteorological and hydraulic models
to provide water stage forecasts that are 
generally compared with warning or 
emergency threshold values

THE CONTEXT
Flood Emergency Management



The concept of Predictive Uncertainty is not 
yet well understood, not only by the 
communities of Meteorologists and 
Hydrologists, but  in particular by the 
stakeholders, namely the managers of flood 
emergencies.
In addition, the use of QPF, generally in the 
form of ensembles, as input to the 
hydrological models has certainly raised the 
level of confusion and misunderstanding.

PREDICTIVE UNCERTAINTY



In order to understand the meaning of predictive
uncertainty, let me pose the following question:

Flooding damages will occur: 

(1) when the actual water level overtops
the dykes, or, 

(2)  when the forecasted level overtops the dykes?

Predictive Uncertainty 

The obvious answer is
(1)  when the actual future water level overtops

the dykes



Predictive uncertainty is obviously the 
uncertainty that we have on the 
occurrence of a real future value as for
instance the water level in 12 hours
from now. 
This must not be confused with
“model uncertainty”.

This answer has a strong implication 
in the definition of the predictive 
uncertainty



So what is the role of the forecasting
model(s)?   Why are we using models?
In clarifying to hydrologists the meaning of predictive 
uncertainty, Krzysztofowicz (1999), points out that 

“Rational decision making (for flood warning, navigation, 
or reservoir systems) requires that the total uncertainty
about a hydrologic predictand (such as river stage, 
discharge, or runoff volume) be quantified in terms of a 
probability distribution, conditional on all available 
information and knowledge.”

and that 

“Hydrologic knowledge is typically embodied in a 
deterministic catchment model”.



The decision maker, uncertain on what will happen, tries to
use all available information (and what is better than a
hydrological forecast?).

In other words….

but…
The uncertainty he must describe and use in the decision
making process is the uncertainty of the future value of
the quantity of interest (for instance the water stage), 
now conditional on the model forecast

and not
The uncertainty of the forecasted quantity, namely the
model output.



Predictive Uncertainty
(simplified)

where

( )tntttntttttntyf Δ+Δ+Δ+ ,, ˆ,ˆ,, xyxy

tnty Δ+

ty

tntt Δ+,ŷ
tx

tntt Δ+,x̂

is the value that the predictand of interest
will take n time steps from now into the future
is the ensemble of all the measurements of the
predictand up to the present time
is the ensemble of all the measurements of the
inputs up to the present time
is the model prediction n time steps from now
into the future
is the ensemble of all the input predictions
up to n time steps from now



Model Uncertainty
(simplified)

( )tntttttnttyf Δ+Δ+ ,, ˆ,,ˆ xxy

tntty Δ+,ˆ is the model prediction n time steps from now
into the future

ty

tx

tntt Δ+,x̂

is the ensemble of all the measurements of the
predictand up to the present time
is the ensemble of all the measurements of the
inputs up to the present time
is the ensemble of all the input predictions
up to n time steps from now
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Van der Waerden B.L. (1952). Order tests for two-sample problem and their power 
I. Indagationes Mathematicae, 14: 453-458.

Van der Waerden B.L. (1953a). Order tests for two-sample problem and their power 
II. Indagationes Mathematicae, 15: 303-310.

Van der Waerden B.L. (1953b). Order tests for two-sample problem and their power 
III. Indagationes Mathematicae, 15: 311-316.

Kelly, K. S., and R. Krzysztofowicz, (1997) A bivariate meta-Gaussian density for use
in hydrology, Stochastic Hydrol. Hydraul., 11, 17–31.

The Normal Quantile Transform

In order to use a convenient multivariate distribution, 
avoiding making hypotheses on the actual distributions
of the predictand and the model output, one can use the
Normal Quantile Transform



The Normal Quantile Transform
STEPS

1) Order in ascending order and attach the probability
Pi = i/n+1 to the ith element of the ranked vector

ty

3) Order in ascending order and attach the probability
Pj = j/n+1 to the jth element of the ranked vector

tŷ

2) Convert Pi into the Standard Normal variable 
corresponding to probability Pi

tη

4) Convert Pj into the Standard Normal variable 
corresponding to probability Pj

tη̂



The Normal Quantile Transform
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The Normal Quantile Transform
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The Po river example

Real space

NQT space



NOTE

The NQT does not preserve the Product Moment 
Correlation, because of the non-linear transformation,
but fully preserves the Order Correlation also known as
Spearman Rank Correlation



The New Conditional Processor
(Background)

Krzysztofowicz approach has many limitations:

- It uses an auto-regressive model as the a priori model
(for instance, this type of model is not suitable for 
flood routing)

- The a priori model is developed in the transformed 
space, not in the original one

-The  a priori model is implicitly assumed to be 
independent from the “deterministic” model

- It has a scalar formulation



The New Conditional Processor
If one can make the hypothesis that all the transformed
variables follow a multi-Gaussian joint probability density,
a more natural approach would be to:

- Develop a set of models in the real untransformed 
space (one or more than one)

- Build the joint probability density in the Gaussian space
(Predictand, a priori model, deterministic model, etc.)

- Simply compute the probability of the predictand 
conditional on ALL the model predictions



The New Conditional Processor
(Requirements)

The NQT guarantees that the marginal distributions of the
transformed variables are all N(0,1).
This does not guarantee that the joint distribution will
actually be a multi-Normal, unless one can show that the
dependence of the different variables in the transformed
space is linear.
This requiement is the same needed by Krzysztofowicz
Bayesian processor and it is generally satisfied.
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- It allows to combine together a wide variety of
different models without the need of using the so-called
Bayesian Model Averaging

- It allows to have multiple outputs, benefitting from
spatial correlation (for instance several water levels along
the same river)

- It is a direct approach and it avoids the need for searching
optimal weights, as required by the Bayesian Model 
Averaging

Advantage of the proposed approach



EXAMPLES 



Combination of

1) A flood routing model

2) A Nearest Neighbour model

The Po river example
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Combination of

1) A rainfall-runoff model (TOPKAPI)

2) An Artificial Neural Network model

The Parma river example
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The Parma river example



The Parma river example
Previsione del modello ANN a 6 ore con piogge osservate 
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CONCLUSIONS

The proposed approach opens several
interesting perspectives still to be explored.

For instance, the inclusion of input (QPF) 
Forecasting Uncertainty, can also be taken
into account
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But most of all, the proposed approach
allows to combine models of different
nature (deterministic, stochastic, etc.)
with the main objective of increasing and 
incorporating into the forecast, all the
available information.

CONCLUSIONS



And, from a hydrological perspective,
let us hope that this will finally allow us
to reconcile physically based with data 
driven models to the benefit of the flood
managers.

CONCLUSIONS



Thank you
for your attention


