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Short and long-term forecasting



Under-dispersion is common and a problem
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Ensemble spread can be too narrow
because it ignores model/data error
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Ensemble dressing
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Each ensemble’s error bounds 
are combined into an envelope 

that includes the total forecast uncertainty.
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But what should this dressing/error distribution be?

Normal (Gaussian) error is ideal, but hydrologic timeseries are often:
Heteroschedastic           Autocorrelated
Non-Normal skew/kurtosis Non-stationary?

Simulated, Observed
and Residuals all highly
non-Normally distributed



Log-sinh data transformation

Logsinh transformation1

z = 1/b log(sinh(a+by))

Parameter estimation
MLE estimation
z = logsinh(y)
zsim = logsinh(ysim)
p(z) ≅ N(μ+zsim,σ)
P(y) = Jzy p(z)

= dz/dy p(z)
Likelihood function

Jzy = coth(a+by)
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1Wang, QJ, Shrestha, DL, Robertson, DE, Pokhrel, 
P. A log-sinh transformation for data normalisation 
and variance stabilisation, (in preparation)

A and B are parameters that control 
strength/shape of transformation

Raw ensembles
Transform

Calculate residuals
Attach uncertainty

Un-transform



QQ plot

Simulated, Observed
and Residuals all highly
non-Normally distributed

Transformed variables non-Normal, 
but the residuals are.



Residual plot

Raw residuals’ variance 
depends on forecast magnitude

Transformed residuals’ variance
roughly constant



Uncertainty estimation

• yL(α) = logsinh-1(N -1((1- α)/2,μ+zsim,σ))
• yU(α) = logsinh-1(N -1((1+ α)/2,μ+zsim,σ))
• ym = logsinh-1(N -1(0.5,μ+zsim,σ))

Error distribution width asymptotes
with forecast size (which is good).



Application

• 16 Australian catchments with a serially complete set of 
retrospective daily ensemble forecasts (starting from 1979-2006).

10,197 forecasts per catchment, each with 33 members.
• Additional 112 catchments to have forecast issue dates staggered 

every 5 days (2,043 start dates/site)
• GR4J model
• Ensemble forecasts using ESP

Half of record for calibration of
GR4J and ensemble dressing
parameters. Half for validation.

Run using Condor Cluster



Verification

• Root mean squared error of ensemble mean (not shown)
• Continuous ranked probability skill score
• Delta score (flatness of ranked histogram, Wilson et al 2007)



Cont. Ranked Prob Skill Score vs leadtime
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Most benefits at short leadtimes when climate uncertainty is small



Delta score (rank histogram flatness) vs leadtime
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Raw ESP rank histograms very non-flat. Dressing helps a lot.



Possible formal expansions
Consider error autocorrelation, blend with error correction. 
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Limitations of what we did
Model error is only based on magnitude, not timing or regime.

Does not quantify chance of zero flow.
Ensemble spaghetti is lost (forever?).

This all may have a different name elsewhere.
This is the least possible effort to try and achieve our objectives.



Limitations of what we did
Model error is only based on magnitude, not timing or regime.

Does not quantify chance of zero flow.
Ensemble spaghetti is lost (forever?).

This all may have a different name elsewhere.
This is the least possible effort to try and achieve our objectives.

HEPEX runs we performed
Ensemble post-processing

GFS and Climatology
Both catchments

Calibration options 1 – 4
2,5,10,15 and 30 day targets

No data assimilation



My future

Travelling for a year (Aug 2011-12) to meet other researchers 
and forecasters. I am hoping to write a book for the public 
about the human side of river forecasting. I also aim to meet 
strange rivers, hydrologic oddities and impressive structures.

Contact me if you 
have suggestions!
Thomas.Pagano@csiro.au

tompagano.blogspot.com

mailto:Thomas.Pagano@csiro.au
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Verification

• Ensemble average skill scores
• NSE, RMSE



Rank histogram based skill scores
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Reliability diagrams



PIT Plots



Flatness of rank histogram – 128 catchments



Conclusions

• The ensemble dressed forecasts are verified with various 
ensemble verification metrics, such as the continuous ranked 
probability score, rank histograms and attributes diagrams. 

• The results demonstrate that ensemble dressed forecasts are 
more skilful and reliable than the undressed ensembles.

• This technique fills a gap by proposing an ensemble post-
processing technique that considers multiple sources of 
uncertainty while requiring only minimal computational 
resources. 

• This method would be well suited for operational forecasting
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Examples of dressed ensemble forecasts
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