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Evaluation of combined hydrologic forecasts

Model averaging: constructing combined hydrologic forecasts
from an ensemble of point forecasts

point forecasts interval forecasts density forecasts

Preliminary results:

@ Point forecasts: linear regression performs better than
more sophisticated model averaging methods

@ Interval forecasts: quantile regression does not always
perform better than simpler methods

@ Density forecasts: future research ...



Model averaging: point forecasts

Y:, t=1,..., T: hydrological variable of interest
(streamflow, pressure head, ...

Xkt, k=1,...,K: ensemble of point forecasts for Y;

Combined point forecasts

K
V2=XIB=Y BiXcs
k=1
Can be associated with forecasts of a linear model

K
Yi=X]B+er= Z Bk Xkt + €t
k=1

or finite mixture model, etc. ..

)
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Choices for 3 compared (Diks & Vrugt, 2010, SERRA)

e Equal weights averaging: Bgwa = (£,---»--+s %)

@ Bates-Granger averaging: ﬁBGAk

@ AIC/BIC averaging: fx = %
i

@ Granger-Ramanathan (GRA) averaging (OLS regression
weights) (x):
N —1
Bara = (X™X) XTY
@ Bayesian model averaging (BMA) weights

e BMA in the finite mixture model (Raftery et al., 2005)
e BMA in the linear regression model (Raftery et al., 1997) (x)

@ Mallows model averaging (MMA) weights (sum of squared
prediction errors + penalty for model complexity) (x)

X
X
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Point forecast accuracy
Diks and Vrugt (2010) examined the RMSPE of point forecasts
in two case studies

@ Case 1:

e Daily streamflow through a 1950 km? watershed

o Leaf River, Mississippi, USA

e 36-year historical record + ensemble forecasts

e Ensemble members: 8 conceptual hydrologic models
(Vrugt & Robinson, 2007)

e Fixed evaluation period 1961-1988 (10,500 obs.)

e Varying calibration sample size (up to 3,000 obs.)

@ Case 2:

e Tensiometric pressure head in 5 m deep layered vadose
zone

e Vadose zone of volcanic origin, New Zealand

e 9,070 hourly observations + ensemble forecasts

e Ensemble members: 7 soil-hydraulic models
(Vrugt & Robinson, 2007)
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Main results (point forecasts)

@ Methods with weights restricted to the simplex (8¢ > 0,
Z,’f:1 Bk = 1) perform worse than unrestricted methods

@ Three best performing methods: GRA weights (linear
regression 3), BMA in linear regression model and MMA
weights

@ These best methods are asymptotically equivalent, but
GRA weights by far simplest to calculate

= use GRA weights
(For further details, see Diks and Vrugt (2010), SERRA)

Note: not necessary to apply a bias correction to the ensemble
members. Just add a constant forecast to X

X
X
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Interval forecasts

Aim: compare interval forecasts from
@ linear regression model
@ quantile regression

Case:
@ HEPEX streamflow data + ensemble forecasts
@ corresponding ensemble of 8 forecasts + constant

Streamflow data are log-transformed

removes most of the asymmetry in the distribution



Interval forecasts from linear regression model

K
Yi=X{B+er=> BXet+er
k=1

(3 estimated by OLS

Bora = argﬂminzn: (XIE;’ - Yr)2 _ (XTX>_1 XTy
t=1

Assume (non-)parametric distribution on ¢; (e.g. N(0, o?))
= 95% interval forecasts (equal tails)

(xIﬁ ~1.965,X18 + 1 .966)



Interval forecasts from quantile regression
Conditional quantile Q,(x) (p € (0, 1)) defined through

P(Yt < Qp(X)‘Xt = X) =p
Linear quantile regression model:
K

Qo(X0) = X{vp+ec=>_ YokXet + et
pa

Given p € (0,1), v, is estimated as
Yp = arg min Z?:1 9 (X-tr’)’p - Yt)
Tp
where g(-) is the so-called tick loss function
g(s)=—(1-p)si(s<0)+psl(s>0)

g(s)

wy
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Relative advantages/disadvantages
Linear regression
@ more parsimonious = potentially worse fit but few
parameters to estimate
@ fixed conditional distribution (apart from location)
@ hence fixed predictive interval lenghts
Quantile regression
@ more flexible = potentially better fits but more parameters
to estimate
@ allows for local changes in distribution
@ hence intervals can change length (heteroskedasticity)
@ but beware: estimated quantiles may cross!!!
7
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First results (interval forecasts)

@ Data set used: 03451500

@ 8 ensemble members (9 including constant) non-calibrated
@ daily streamflow data, period 1961 to 1997 (13514 days)

@ Calibration sample size 6757

@ Evaluation sample size 6757

Evaluation criteria: coverage probability (CP) + average
predictive interval (PI) length

| nominal CP CP CP(lower) CP(upper) Pllength

GRA 0.950 0.954 0.985 0.969 0.957
QR 0.950 0.902 0.948 0.955 0.890
QR 0.975 0.957 0.958 0.979 1.050

X
X
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streamflow

Streamflow, observed + interval forecasts

250 |

L L L L L B 7\7 - L ) L L ) \77 1
5680 5700 5720 5740 5760 5780 5800 5820 5840 5860 5880
time

13/15



Conclusions (preliminary)

@ Linear regression model provides good point forecasts

@ Interval forecasts from linear regression model have
correct coverage (after log-transforming streamflow data)

@ Interval forecasts from quantile regression are slightly
more narrow, but have worse coverage

@ Adjusting the QR intervals such that the coverage is
correct leads to intervals that are wider than the linear
regression intervals

@ Overall, the linear regression model performed best
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Future research

@ Extend quantile regression results

@ Local quantile estimation (kernel methods)
@ Construct density forecasts

@ Density forecast evaluation

@ Focus on specific regions of interest (e.g. upper part of
ditribution for flood warnings)
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