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Predictive Uncertainty can be defined as the probability of
occurrence of a future value of a predictand (such as water level,
discharge or water volume) conditional on all the information that
can be obtained on the future value, which is typically embodied in
one or more meteorological, hydrological and hydraulic model forecasts
(Krzysztofowicz,1999)

PREDICTIVE UNCERTAINTY MUST BE QUANTIFIED IN TERMS OF 
PROBABILITY DISTRIBUTION.

If the available information is a model forecast, the Predictive
Uncertainty can be denoted as:

PREDICTIVE UNCERTAINTY (PU)

Krzysztofowicz, R.: Bayesian theory of probabilistic forecasting via deterministic 
hydrologic model, Water Resour. Res., 35, 2739‐2750, 1999. 2



3) Predictive Uncertainty is 
obtained by the Bayes Theorem

4) Reconversion of the obtained 
distribution from the Normal Space to 
the Real Space using the Inverse NQT

1) Conversion from the Real Space to 
the Normal Space using the NQT

2) Joint Pdf is assumed to be a Normal 
Bivariate Distribution or composed by 2 
Truncated Normal Distributions

Todini, E.: A model conditional processor to assess predictive uncertainty in flood forecasting, Intl. J. 
River Basin Management, 6 (2), 123‐137, 2008.

G. Coccia and E. Todini: Recent Developments in Predictive Uncertainty Assessment Based on the 
Model Conditional Processor Approach, HESSD, 7, 9219‐9270, 2010
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MODEL CONDITIONAL PROCESSOR: BASIC CONCEPTS
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HOW TO DEAL WITH THESE 
FORECASTS?

WHICH WEIGHT CAN BE 
ASSIGNED TO EACH ONE? 

Usually, a real time flood forecasting system is composed by more than one
model chain, different from each others for structure and results.

MULTI-MODEL APPROACH

BAYESIAN 
COMBINATION
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THE BASIC PROCEDURE CAN BE EASILY 
EXTENDED TO MULTI-MODEL CASES

N+1‐VARIATE

N‐VARIATE

UNI‐VARIATE

N = NUMBER OF MODELS
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MULTI-MODEL APPROACH



The knowledge of the Predictive Uncertainty allows to easily extrapolate the
probability to exceed a threshold value, such as the dyke level.

It can be directly computed from the Predictive Uncertainty,  as its integral 
above the threshold value.

FLOODING PROBABILITY AT A SPECIFIC TIME HORIZON
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Which is the probability that the water level 
will be higher than the dykes at the hour 24th?

In the decision making process, this 
methodology allows to answer to the following 

question:
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Which is the probability that the river dykes 
will be exceeded within the next 24 hours?

Probably a more interesting question may be:
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To be able to answer to this question it is 
necessary to known the correlation between the 
predicted variable at the different time steps of 

the prediction



Following Krzysztofowicz (2008), the procedure can be
generalized including in the bayesian formulation all
the available forecasts within the entire horizon time.

A MULTI-VARIATE PREDICTIVE DISTRIBUTION is
obtained, which accounts for the joint PU of the
observed variable at each time step.

Krzysztofowicz, R.: Probabilistic flood forecast: exact and approximate predictive 
distributions, Research Paper RK0802, University of Virginia, September 2008. 9

MULTI-TEMPORAL APPROACH



T ‐ VARIATE

((N+1) ∙ T) ‐ VARIATE

(N ∙ T) ‐ VARIATE

N = NUMBER OF MODELS
T = NUMER OF TIME STEPS

With respect to the multi-model approach, the dimension of all 
the distributions is multiplied by the number of the time steps.
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MULTI-TEMPORAL APPROACH



FLOODING PROBABILITY WITHIN THE TIME HORIZON 
OF T TIME STEPS
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At the 12th h
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Which is the probability that the river dykes 
will be exceeded exactly at the hour 24th?



Can be obtained also with the basic and multi‐model 
approaches since it does not depend on the state of the 

variable at 12 hours

Which is the probability that the water level will 
be higher than the dykes one at the hour 24th? RED + GREY

Which is the probability that the river dykes 
will be exceeded within the next 24 hours?

Which is the probability that the river dykes 
will be exceeded exactly at the hour 24th?

RED + GREY + YELLOW

RED
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Forecasted hourly levels with a  
time horizon of 24 and 36 h

Observed hourly levels

01/05/2000 20/01/200930/06/2004

MCP:        CALIBRATION                                          VALIDATION

PO RIVER AT PONTELAGOSCURO and PONTE SPESSA

Available data, provided by the Civil Protection of Emilia Romagna Region, Italy:
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Exact Flooding 
Time Probability

Cumulative Flooding 
Probability

90% Uncertainty 
Band with BASIC 
APPROACH 
(TNDs)

Pontelagoscuro Station (36 h)

P(
T*
)

Deterministic 
Forecast

P(
T*
)

90% Uncertainty 
Band with MULTI‐
TEMPORAL 
APPROACH
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Exact Flooding Time 
Probability

Cumulative Flooding 
Probability

Ponte Spessa Station (24 h)

P(
T*
)

P(
T*
)

90% Uncertainty 
Band with BASIC 
APPROACH 
(TNDs)

Deterministic 
Forecast
90% Uncertainty 
Band with MULTI‐
TEMPORAL 
APPROACH
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Ponte Spessa Station (24 h)

FLOODING PROBABILITY ASSESSMENT VERIFICATION
If the value provided by the processor is correct, considering all the
cases when the computed exceeding probability takes value P, the
percentage of observed exceeding occurrences must be equal to P.

Red Line =  
Perfect beahviour

Computed 
with a 5% 

discretization

VALIDATIONCALIBRATION

17



• Most of the existing Uncertainty Processors do not
account for the evolution in time of the forecasted
events

• The correlation between the predicted variable at
different time steps of the prediction should be taken
into account

• The presented multi‐temporal approach allows to
identify the joint predictive distribution of all the
forecasted time steps
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CONCLUSIONS



• This procedure allows to recognize and reduce the
systematic time errors and it gives important
information, such as the probability to have a
flooding event within a specific time horizon and the
exact flooding time probability

• The comparison of predicted and observed flooding
occurrences verified that, a part small errors due to
the unavoidable approximations, the methodology
computes the flooding probability with good
accuracy
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CONCLUSIONS



THANK YOU FOR YOUR 
ATTENTION AND YOUR 

PATIENCE
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The assumption of the homoscedasticity of errors leads to a lack 
of accuracy, especially for high flows. 

In the Normal Space the data are divided in two (or more) samples
and each one is supposed to belong to a different Truncated Normal
Distribution. Hence, two Joint Truncated Normal distributions (TNDs) are
identified on the basis of the samples mean, variance and covariance.

HETEROSCEDASTICITY OF THE ERROR:               
THE TRUNCATED NORMAL DISTRIBUTIONS

Coccia, G. and Todini, E.: Recent developments in predictive uncertainty assessment based 
on the model conditional processor approach, Hydrol. Earth Syst. Sci. Discuss., 2010. 21



HOW TO USE THE TNDs IN THE MULTI-TEMPORAL 
APPROACH?

RISING LIMB

RECESSION LIMB

HIGH FLOWS

LOW FLOWS

THRESHOLD FOR T=t0

THRESHOLD 
FOR T=t0+36

DATA OF THE MODEL THAT BETTER PERFORMS IN HIGH FLOWS 22



PONTELAGOSCUROPONTE SPESSA
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The choice of the threshold using the Joint Truncated Distributions.

Is it possible to find an objective
rule, related to the forecast cdf
gradient, to identify this threshold?

How many TNDs must be used?
Are 2 enough?

OPEN QUESTIONS
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A good model fit of the marginal distribution tails is very important:

For which probabilities should tails
be used?

Which is the best curve?

Would be better the use of tails or to identify a probability model
for the whole series?

OPEN QUESTIONS
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