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Research Problem Definition
• Quantify the predictive uncertainty of a hydrologic model 

simulation, i.e., conditional distribution of observed flow given 
simulation , f(obs|sim)
– ensemble members vs. quantiles of the conditional distribution
– parametric vs. non parametric methods

• Key requirements
– produce flow ensembles
– preserve the skill that is present in simulation
– correct systematic and conditional biases
– generate reliable ensemble streamflows that discriminate events 

vs. non-events



Gaussian Regression Technique
• The f(obs|sim) is modeled in normal space via simple linear 

regression (Seo, et al., 2006)
observation = f (simulation, recent observation)

• Calibration
- Convert flow variables into normal variates via NQT
- Develop a regression in normal space

Zobs,t = (1-bt) Zobs, t-1 + bt Zsim, t + Et

Zobs,t – observed flow ;  Zobs, t-1 – prior observed flow;

Zsim, t – simulated flow;  Et – Error;  bt – regression parameter

- Estimate ‘b’ in normal space by minimizing CRPS of ensemble 
flow simulations in the original flow space



Gaussian Regression Technique
• Account for some dependency between Zobs, t-1 and Et

• Classify simulated flows into different groups, then calibrate 
the technique separately for each group 

• For NQT modeling, use hyperbolic approximation (λ and ω
parameters) for the uppermost–tail of the flow distribution 
(Deutsch and Journel, 1992)

• Operational considerations:
– Simple technique 

– Data-driven and parsimonious
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Application of the technique
• 12 test locations (here 4 locations in NC, MD, TX, MO)
• 9 model simulations (here sac, prms and multi-model mean)
• Period of the record

– January 1, 1962 – December 31, 1997 (36 years)
• Calibration scheme

– Two categories: flow threshold is 90th percentile of sample 
climatology

• Evaluation (against raw simulations)
– Dependent validation (36 years)
– Leave-one year out cross-validation (36 years)

• Verification metrics
– Correlation, Relative Mean Error and Mean Absolute Error
– CRPS Skill Score, Reliability Diagram, Relative Operating 

Characteristic (ROC)
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In this presentation …
• Research questions

– Value of regression parameter ‘b’ with respect to 
calibration period and model

– Quality of ensembles generated from the technique
– Performance of the technique with respect to different 

hydrologic models and locations



Regression parameter ‘b’ 
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Forecast accuracy and bias

9/11/2011 Climatological exceedence probability (logit scale)

•Ensemble mean (solid) 
vs. raw single-valued 
simulations (dashed)

•Ensemble mean 
exhibited      

improved accuracy 
(i.e., correlation 
and MAE)
reduced biases 
except for a few 
locations

all data                high flows

Correlation Relative Mean Error Mean Absolute Error
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Verification metrics: CRPSS
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Verification metrics: reliability diagrams
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Verification metrics: ROC
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•Good discrimination 
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•Similar performance 
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Findings
• The Gaussian regression technique

– preserves correlations and often times exhibits improved 
correlations compared to raw simulations

– maintains accuracy of raw simulations

– exhibits reduced biases compared to raw simulations

• The generated ensembles are reliable and yield good 
discrimination between events and non-events.

• Quality of ensembles varies with location (possibly with flow 
distribution) and hydrologic model (accuracy and bias of raw 
simulations)

14
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Future work

• Optimization of regression parameter ‘b’ using a multi-
objective function to address key requirements of users

• Enhancement of flow stratification criterion (multiple 
thresholds, seasons,  additional variables - precipitation, 
rising/falling limb)

• Improvement of hyperbolic approximation for the uppermost-
tail of the distribution (parameters λ and ω)

• Next steps
– Evaluation study with flow ensembles

– Implementation in NWS Hydrologic Ensemble Forecast System
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Thank you

Questions ?

Contact: Satish.regonda@noaa.gov
Reference:
Seo, D.-J., Herr, H. D., and Schaake, J. C.: A statistical post-processor for 

accounting of hydrologic uncertainty in short-range ensemble streamflow 
prediction, Hydrol. Earth Syst. Sci. Discuss., 3, 1987-2035, 
doi:10.5194/hessd-3-1987-2006, 2006.

mailto:Satish.regonda@noaa.gov
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