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Difficulties:
• Parametric assumptions don’t always apply
• Marginal transforms (NQT) often problematic
• Bias/skill are strongly amount dependent
• Type-II conditional bias (CB) often overlooked

Motivation (for operational use):
1. Broadly applicable w/ limited supervision 
2. Capture amount-dependent bias and skill
3. Address Type-I CB (reliability) and Type-II CB

Problem definition



The random variables:
X = observed (assumed unbiased)
Y = {Y1,…,Ym} = vector of (ensemble) predictors (biased)

The required conditional distribution:

Which can be written as:

Problem definition
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Proposed solution: 
indicator co-kriging

(ICK) 
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Proposed solution

Probability of not exceeding a single threshold, cf , given the predictors

5

Climatology +  Conditional adjustment (expectation of 0)

Weights 
to estimate

Brown & Seo (2010): JHM, 11(3), 642-665:



How to estimate weights?
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Mixed objective function (papers in prep.)
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= (Brier score + Type-II CB) | predictors.

This has a closed form solution.   

= predicted

= observed
J = J1+J2
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Application of (CBP)-ICK to 
multi-model ensemble of 
hydrologic simulations 

(MOPEX basins)



8

Multi-model ensemble of simulated flow 
• Daily flow; 7 models (no gr4j); 9 basins.
• No tuning for specific basins! 
• Used one prior observation as aux. predictor  

Cross-validation/verification
• “Leave-one-year-out” cross-validation
• Verified ensemble mean & probabilities (EVS)
• Skill: raw ensemble & Gaussian mixture BMA
• Block bootstrap to assess sampling unc.

Application to MOPEX data



Relative error of ens. 
mean (μY) given obs. (X) 
> threshold (cp), which 
has clim. prob, p:

• CB in raw ensemble: 
over-predict low flow, 
under-predict high.

• Much reduced by 
CBP-ICK (note that 
CB is only part of 
objective function).

• BMA fairs less well, 
except at low thresh.
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Type-II CB of ensemble mean
Flood flow



Conditional CRPSS:

• 40-60% gain in skill 
for most locations 
and flow thresholds.

• Greatest gain where 
conditional bias was 
large and predictors 
remain powerful.

• 0817/0816 (in TX): 
convective precip.?

10

Conditional skill
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Type-I CB (reliability):

• Raw ensembles are 
reasonably reliable 
(models reasonably 
calibrated overall).

• Some improvement 
following bias-
correction, both in 
reliability and 
sharpness.

• However, greatest 
gains in skill stem 
from reducing Type-II 
CB, not Type-I.
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Event reliability (Type-I CB)



ROC curves

• Empirical PoD/PoFD
fitted with bivariate 
normal model.

• Raw ensembles do 
well at high 
thresholds.

• Significant gains in 
event discrimination 
at most thresholds 
following bias-
correction.
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Event discrimination



Conclusions
• Goal of “maximizing sharpness subject 

to reliability” should be reframed.
• Type-II CB can be addressed when 

estimating post-p. statistical parameters.  
• We propose a flexible non-parametric 

technique with Type-II CB minimization.
• Appropriate for multi-year datasets of 

single/multi-model ensembles.
• Need to evaluate for regulated flows.
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Questions???
Reference papers:

Brown, J.D. and Seo, D-J. (2010) A nonparametric post-processor for 
bias correction of hydrometeorological and hydrologic ensemble 
forecasts.  Journal of Hydrometeorology, 11(3), .

Brown, J.D., Demargne, J., Seo, D-J., and Liu, Y. (2010) The Ensemble 
Verification System (EVS): A software tool for verifying ensemble 
forecasts of hydrometeorological and hydrologic variables at discrete 
locations. Environmental Modelling and Software, 25(7), 854-872. 

Brown, J.D. and Seo, D-J (in preparation) Evaluation of a non-
parametric post-processor for hydrologic uncertainty estimation and 
bias-correction, with application to a multi-model ensemble of simulated 
streamflows from test basins in the southeast U.S.  TBD.

14



15

Extra slides 



How to estimate weights?
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Problem: ICK is unconditionally unbiased, but no 
mention of conditional bias in J.  “Errors in variables” 
effect exaggerates conditional bias at high thresholds.

Min. square error (Brown & Seo, 2010):
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= (predicted - observed)2 | predictors
= conditional error variance or conditional “Brier Score”. 
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Correlation
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Brier Skill Score
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Observed climatologies
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