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Evaluation of combined hydrologic forecasts

Model averaging: constructing combined hydrologic forecasts
from an ensemble of point forecasts

point forecasts interval forecasts density forecasts

Preliminary results:
Point forecasts: linear regression performs better than
more sophisticated model averaging methods
Interval forecasts: quantile regression does not always
perform better than simpler methods
Density forecasts: future research . . .
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Model averaging: point forecasts

Yt , t = 1, . . . ,T : hydrological variable of interest
(streamflow, pressure head, . . . )

Xk ,t , k = 1, . . . ,K : ensemble of point forecasts for Yt

Combined point forecasts

Ŷ β
t = X T

t β =
K∑

k=1

βkXk ,t

Can be associated with forecasts of a linear model

Yt = X T
t β + εt =

K∑
k=1

βkXk ,t + εt

or finite mixture model, etc. . .
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Choices for β compared (Diks & Vrugt, 2010, SERRA)

Equal weights averaging: β̂EWA =
( 1

k , . . . , . . . ,
1
k

)
Bates-Granger averaging: β̂BGA,k =

1/σ̂2
kPK

j=1 1/σ̂2
j

AIC/BIC averaging: β̂k = exp(−Ik/2)PK
j=1 exp(−Ij/2)

Granger-Ramanathan (GRA) averaging (OLS regression
weights) (∗):

β̂GRA =
(

X TX
)−1

X TY

Bayesian model averaging (BMA) weights
BMA in the finite mixture model (Raftery et al., 2005)
BMA in the linear regression model (Raftery et al., 1997) (∗)

Mallows model averaging (MMA) weights (sum of squared
prediction errors + penalty for model complexity) (∗)
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Point forecast accuracy
Diks and Vrugt (2010) examined the RMSPE of point forecasts
in two case studies

Case 1:
Daily streamflow through a 1950 km2 watershed
Leaf River, Mississippi, USA
36-year historical record + ensemble forecasts
Ensemble members: 8 conceptual hydrologic models
(Vrugt & Robinson, 2007)
Fixed evaluation period 1961–1988 (10,500 obs.)
Varying calibration sample size (up to 3,000 obs.)

Case 2:
Tensiometric pressure head in 5 m deep layered vadose
zone
Vadose zone of volcanic origin, New Zealand
9,070 hourly observations + ensemble forecasts
Ensemble members: 7 soil-hydraulic models
(Vrugt & Robinson, 2007)
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Streamflow excess prediction error ∆RMSE
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Main results (point forecasts)

Methods with weights restricted to the simplex (βk > 0,∑K
k=1 βk = 1) perform worse than unrestricted methods

Three best performing methods: GRA weights (linear
regression β), BMA in linear regression model and MMA
weights
These best methods are asymptotically equivalent, but
GRA weights by far simplest to calculate

⇒ use GRA weights

(For further details, see Diks and Vrugt (2010), SERRA)

Note: not necessary to apply a bias correction to the ensemble
members. Just add a constant forecast to X
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Interval forecasts

Aim: compare interval forecasts from
linear regression model
quantile regression

Case:
HEPEX streamflow data + ensemble forecasts
corresponding ensemble of 8 forecasts + constant

Streamflow data are log-transformed

removes most of the asymmetry in the distribution
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Interval forecasts from linear regression model

Yt = X T
t β + εt =

K∑
k=1

βkXk ,t + εt

β estimated by OLS

β̂GRA = arg min
β

n∑
t=1

(
X T

t β − Yt

)2
=
(

X TX
)−1

X TY

Assume (non-)parametric distribution on εt (e.g. N(0, σ2))

⇒ 95% interval forecasts (equal tails)(
X T

t β − 1.96σ̂,X T
t β + 1.96σ̂

)
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Interval forecasts from quantile regression
Conditional quantile Qp(x) (p ∈ (0,1)) defined through

P(Yt ≤ Qp(x)|X t = x) = p

Linear quantile regression model:

Qp(X t) = X T
t γp + εt =

K∑
k=1

γp,kXk ,t + εt

Given p ∈ (0,1), γp is estimated as

γ̂p = arg min
γp

∑n
t=1 g

(
X T

t γp − Yt

)
where g(·) is the so-called tick loss function

g(s) = −(1− p) s I(s < 0) + p s I(s ≥ 0)
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Relative advantages/disadvantages
Linear regression

more parsimonious⇒ potentially worse fit but few
parameters to estimate
fixed conditional distribution (apart from location)
hence fixed predictive interval lenghts

Quantile regression
more flexible⇒ potentially better fits but more parameters
to estimate
allows for local changes in distribution
hence intervals can change length (heteroskedasticity)
but beware: estimated quantiles may cross!!!
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First results (interval forecasts)

Data set used: 03451500
8 ensemble members (9 including constant) non-calibrated
daily streamflow data, period 1961 to 1997 (13514 days)
Calibration sample size 6757
Evaluation sample size 6757

Evaluation criteria: coverage probability (CP) + average
predictive interval (PI) length

nominal CP CP CP(lower) CP(upper) PI length

GRA 0.950 0.954 0.985 0.969 0.957
QR 0.950 0.902 0.948 0.955 0.890
QR 0.975 0.957 0.958 0.979 1.050
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Streamflow, observed + interval forecasts
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Conclusions (preliminary)

Linear regression model provides good point forecasts
Interval forecasts from linear regression model have
correct coverage (after log-transforming streamflow data)
Interval forecasts from quantile regression are slightly
more narrow, but have worse coverage
Adjusting the QR intervals such that the coverage is
correct leads to intervals that are wider than the linear
regression intervals
Overall, the linear regression model performed best
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Future research

Extend quantile regression results
Local quantile estimation (kernel methods)
Construct density forecasts
Density forecast evaluation
Focus on specific regions of interest (e.g. upper part of
ditribution for flood warnings)
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