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Brief Personal Presentation

Current Research area:
• Optimal anticipatory control of water systems under uncertainty

• Forecast uncertainty
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• Tree and Ensemble are two different models of uncertainty

Difference between a tree and an ensemble

What is a tree?

ensemble tree
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Uncertainty

• Tree and Ensemble are two different models of uncertainty
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Why using a tree

Two interdependent decisions, under uncertainty, in this sequence:

The “two-stage” optimization problem

Release at t1

u1

Precipitation event 
D:[0,1]; P(d =1) = p

Example: control of a reservoir

Control u
Released water (limited)

State x
water level

disturbance d:

Discharge (to the reservoir)

Release at t2

u2

Decision Uncertainty Decision
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Why using a tree

Two interdependent decisions, under uncertainty, in this sequence:

The “two-stage” optimization problem

Release at t1

u1

Precipitation event 
D:[0,1]; P(d =1) = p

Example: control of a reservoir

Control u
Released water (limited)

State x
water level

disturbance d:

Discharge (to the reservoir)

Release at t2
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Decision variables:
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Control u
Released water (limited)

State x
water level
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Discharge (to the reservoir)

Why using a tree

Two interdependent decisions, under uncertainty, in this sequence:
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Why using a tree

Two interdependent decisions, under uncertainty, in this sequence:

The “two-stage” optimization problem

Release at t1

u1

Precipitation event 
D:[0,1]; P(d =1) = p

Example: control of a reservoir

Control u
Released water (limited)

State x
water level

disturbance d:

Discharge (to the reservoir)

Release at t2

u2

Decision Uncertainty Decision

t = 1 t = 2

u1

u2,1

u2,2

t = 3 t = 4t = 0

u0

u3,1

u3,2

u4,2

u4,3

u4,1
uncertainty

Creation 
of a tree
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t

d

t*

How to create a tree from an ensemble
Existing procedures for scenario aggregation

• Existing procedure: “optimal scenario reduction” technique
• Aggregate scenarios when “sufficiently close”, i.e. average distance on 

[0,t*] smaller than a fixed threshold

This method requires the definition of 
• Distance
• Threshold

bifurcation point

S0,p1+p2 S1,p1

S2,p2



13Challenge the future

t

d

t*

How to create a tree from an ensemble
Existing procedures for scenario aggregation

• Existing procedure: “scenario reduction technique”
• Aggregate scenarios when “sufficiently close”, i.e. average distance on 

[0,t*] smaller than a fixed threshold

This method requires the definition of 
• Distance
• Threshold

bifurcation point

S0,p1+p2 S1,p1

S2,p2

• Definition of closeness: distance definition
• Definition of sufficient: threshold definition

Importance of placing the bifurcation 
points a the right moment

Optimal control of the reservoir using a tree

Relative performance index:
1: perfect forecast, no uncertainty
0: deterministic forecast

Threshold value sensitivity analysis
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• Bifurcation points are to be placed as soon as the uncertainty is solved, 
i.e. where probability of occurrence is sufficiently close to one

• Example: stream response with delay
• Two scenarios:

• Scenario x=1: rain at t*

• Scenario x=2: no rain

• Observable dimensions: 
• Precipitation P

• Discharge d

An Information Based approach

How to create a tree from an ensemble

t

P

t

d

P(t=t*,x=1)=1

P(t=t*,x=2)=0
t*

d(x=1)

d(x=2)
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• Observable variables
• t = time [1,…,h]
• x = scenario x ϵ X:{1,2,…,N} 
• j = observable dimension discharge, rain, etc,…

How does information enter the system?
Update of scenarios probability

yfxyt | is a random variable      distributed

),,( jxty

ε+= tt yy ˆ ( )2,0~ σε N

• Use of the Bayesian theorem:

Update of the probability p(x) given the observation  tŷ
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tŷ
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How does information enter the system?
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• Use of the Bayesian theorem:

Update of the probability p(x) given the observation  tŷ

• Observable variables
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• Observable variables
• t = time [1,…,h]
• x = scenario x ϵ X:{1,2,…,N} 
• j = observable dimension discharge, rain, etc,…

How does information enter the system?
Update of scenarios probability

yfxyt | is a random variable      distributed

ε+= tt yy ˆ ( )2,0~ σε N

Update of the probability p(x) given the average observation    |xktŷ

• Use of the Bayesian theorem on average:

),,( jxty1



20Challenge the future

• Observable variables
• t = time [1,…,h]
• x = scenario x ϵ X:{1,2,…,N} 
• j = observable dimension discharge, rain, etc,…

How does information enter the system?
Update of scenarios probability

yfxyt | is a random variable      distributed

ε+= tt yy ˆ ( )2,0~ σε N

Update of the probability p(x) given the average observation    |xktŷ

• Use of the Bayesian theorem on average:

),,( jxty

t

x1,p1

x2,p2

t

p(x)
1

p*

t*

1xxk =
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Application

• Observable variable: present discharge

σ = 1 m³/sσ = 5 m³/s
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Future application
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• Observable variable: discharge forecast
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Comments and conclusion

• In the cases when uncertainty is solved in time

• It is possible to generate a tree from an ensemble
• the “Information Based” method requires the definition how 

information enters the system

A tree is a better model of uncertainty than an ensemble
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