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Introduction



Sources of uncertainty in hydrological
modelling

Inputs Model parameters Calibration data
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Uncertainty analysis methods considered

= 1. UNNEC = machine learning model of the past errors of
the optimal process modelis built

= 2. MLUE = machine learning model of the process model’s
Monte Carlo simulation results is built

Monte Carlo and machine learning (MLUE) S



1. UNEEC method

UNcertainty Estimation based on local Errors and Clustering

= Mmachine learning model of the past errors of the optimal
process model s built

D.P. Solomatine, D.L. Shrestha. A novel method to estimate model uncertainty
using machine learning techniques. Water Resources Res. 45, W00B11,

doi:10.1029/2008WR006839, 2009.
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UNEEC: assumptions, constraints

= Assumptions
= Model error is an indicator of the model uncertainty

= Model error depends on the current condition of a natural system
and can be predicted

= Model errors are similar for similar conditions
= Constraints
= Model structure and parameters are fixed

= Need to re-train the error model with the changes in the
catchment characteristics (e.g. land use change)

= Data hungry, more data are needed for reliable results
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Idea 1: local modelling of errors

A
Error distribution in Output
cluster fj past records

(examples in the
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Idea 2: Use fuzzy clustering of examples to
generate training data sets

Eager learning
(ANN or M5 model tree)
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Using instance-based learning

Instance based
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UNEEC details. Step 1: clustering

Clustering (finding groups of data in the space characterising

hydro-meteo condition): K-means clustering, fuzzy C-means

clustering
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Output

UNEEC detalls. Step 2: Determining
Prediction Interval (Pl) for each cluster
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UNEEC details.
Step 3, 4, 5: Building and using the model
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Step 3: Generation of

Prediction intervals for
each example

Step 4: Building the
uncertainty Model

Step 5: Using the
uncertainty Model

Model Outputs with
uncertainty bounds
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Model
residuals

Real World
System

Model
P=M(X

UNEEC methodology
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2. MLUE method
Machine Learning in Uncertainty Estimation

= machine learning model of the process model’s Monte
carlo simulation results is built

D. L. Shrestha, N. Kayastha, and D. P. Solomatine. A novel approach to parameter
uncertainty analysis of hydrological models using neural networks. Hydrol. Earth
Syst. Sci., 13, 1235-1248, 2009.
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Monte Carlo simulation of parametric
uncertainty
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Monte Carlo simulation of parametric
uncertainty

= Consider the model M calculating y (e.g., discharge)

= y(t) = M (X(1), p)
= where X(t) = vector of inputs (precipitation, temperature etc)
known for r=1,..., T

m P = vector of parameters (soil properties, roughness, etc)

= Monte Carlo approach:
= sample N parameter vectors p,

= run the model for each of them y,(t) = M (X(t), p;)
and generate N outputs (leave some of them if GLUE used)

= assess distribution of Q,(t) for each time moment 7 (or its
parameters - mean, variance, prediction intervals, quantiles)
m The problem:

m How to assess the parametric uncertainty of the
model M for = T+1 when new input data X(t+1) is fed?

Monte Carlo and machine learning (MLUE) 17



Issues with MC

= Issues with re-running MC for new Inputs:

= 1) convergence of the Monte Carlo simulation is very slow
(O(N™-0.5)) so larger number of runs needed to establish a
reliable estimate of uncertainties

= 2) number of simulation increases exponentially with the
dimension of the parameter vector ((O(n”~d)) to cover the
entire parameter domain
m ldea:

m encapsulate the results of MC simulation in a machine
learning model

Monte Carlo and machine learning (MLUE)
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MLUE Methodology



Methodology (1)

Consider the sources of the uncertainty analysis to be
conducted within the framework of Monte Carlo simulation

Execute the MC simulations to generate the data
yi() = M (X(1), p)

Estimate the uncertainty measures of the MC realizations,
e.g., mean, variance, prediction intervals, quantiles

= In this study, we use two quantiles (say, 5% and
95%), forming the prediction interval Pl

Monte Carlo and machine learning (MLUE)
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Methodology (2)

Analyze the dependency of the uncertainty measures
(quantiles) on the /nput and state variables of the
hydrological model

= we used Correlation and Average mutual information
analysis

Select the input variables for machine learning model
based on the dependency analysis

Train the machine learning model U to predict the
uncertainty measures of MC realizations P/ = U (X)

Validate machine learning model U by estimating the
uncertainty measures with the “new” input data

Monte Carlo and machine learning (MLUE) 21



Validation

= Measuring predictive capability of uncertainty model U (measures the
accuracy of uncertainty models in approximating the quantiles of the
model outputs generated by MC simulations)

= Coefficient of correlation (r) and root mean squared error (RMSE)

= Measuring the statistics of the uncertainty estimation (i.e. goodness of
the model U as uncertainty estimator)

= Prediction interval coverage probability (PICP) and
mean prediction interval (MPI) (Shrestha & Solomatine 2006, 2008)

1 n
PICP==%C
Nz
1, PLE <y, <Pl
0, otherwise

n
MPI :EZ(PL%’ ~PL})
with C = { N

= Visualizing such as scatter and time plot of the prediction intervals
obtained from the MC simulation and their predicted values

Monte Carlo and machine learning (MLUE) 22
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Study area: Brue catchment, UK
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Study area: Brue catchment, UK
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Conceptual Hydrological model HBV

SF —Snow

RF —Rain

EA — Evapotranspiration

SP — Snow cowver

IN —Infiltration

R — Recharge

SM — Soil moisture

CFLUX — Capillary transport
UZ — Storage in upper reservoir
PERC — Percolation

LZ — Storage in lower reservoir
Qo — Fast runoff component

Q1 — Slow runoff component
Q - Total runoff

A

AN
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Data Analysis

= Analysis of dependency btw various combinations of the
Input variables and the output

= Correlation
= Average mutual information (AMI) between REt and Pls,
( optimal lag time is around 7-9 hours).

= Additional analysis of the correlation and AMI between the
Pls and observed discharge Qft are carried out. (i.e. with
the lag of O, 1, 2) have very high correlation with the Pls.

Monte Carlo and machine learning (MLUE) 27



Experimental setup

= MC simulation (MLUE)

= 9 Parameters of HBV model are sampled uniformly from
the feasible ranges

= Nash-Sutcliffe coefficient of efficiency (CE) is used as error
measure

= Convergence — stabilized after 10,000 (75,000 runs made)

= Only 25,000 “good” models considered (rejection threshold
IS set to 0) to compute prediction quantiles

Monte Carlo and machine learning (MLUE)
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Experimental setup

= Machine learning model U (MLUE)
" Pl =U(RE; 55 Qrp AQ¢;)
m Pl - lower or upper prediction intervals,
m RE, s, - average of RE, ;, RE,, RE, , RE,, and RE,,

" AQ;; - Ory - Oro
= Input variables were selected based on the analysis of their
relatedness to output error (average mutual information)

Pxy (X, )
Py ()R, (Y})

AMI=) Pyy (Xi’Yj)|092{
i, j
= Methods:
= M5 model trees,
= locally weighted regression
= MLP neural networks

Monte Carlo and machine learning (MLUE)
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Results
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UNEEC: Performance (MLP ANN)
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training +CV 11135 5332 59582 09937
training 115.16 55.11 39002 09975
upper CvV 116.69 5418 39332 09974
training +CV 11566 5479 39002 09975
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UNEEC: Estimation of uncertainty bounds
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MLUE: Estimation of prediction intervals
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MLUE: Performances

m Predictive capability

Corr C RMSE

PIL PIV PI- PIV
MT 0.841 0.792 0.614 1.641
LWR 0.822 0.798 0.643 1.604
ANN 0.847 0.806 0.584 1.568

MCS = Monte Carlo
MT = M5 Model tree
LWR = local weighted regression
ANN =MLP neural network

m Gooadness of

uncertainty measures
MCS MT LWR ANN
PICP 77.24 66.97 75.16 | 65.54
%
MPI 2.09 2.03 1.93 1.96
m3/s
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Extensions

m Estimation of several quantiles 5%, 10%:10%:90%, 95%
= |.e. estimating cdf of MC realizations by machine learning

models
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Use of Machine learning methods:
conclusions

Machine learning methods are able to replicate:
= Past performance of a process model
= Results of Monte-Carlo simulations

The methods are computationally efficient and can be
used in real time application of various kinds

The results demonstrate that the interpretable
uncertainty estimates are generated

Future work:

= Other ML methods are to be tested

= The methods can be applied in the context of other
sources of uncertainty - input, structure, or combined
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