THORPEX Goal/Research Topic	HEPEX Contribution
Global-to-regional influences on the evolution	Hydrological applications range across scales
and predictability of weather system	from catchments of few km ² to continental scale.
	It can integrate responses over a range of
	variables (for example precipitation,
	evaporation, temperature, radiation etc) as well
	as across spatial and temporal scale.
	Hydrological systems act often as a low pass
	non-linear filter of atmospheric drivers. As such
	it can for example allow to assess <i>predictive skill</i>
	at all forecast ranges, including potential
	predictability of many near surface variables on a
	large range of scales. These scales are
	meaningful integrators of point observations and
	thus allow a suitable comparison to model
	predictions. Additionally, hydrology can act as a
	diagnostic to quantify the contributions of initial
	condition and model uncertainty to jorecast
	and large scale initial condition uncertainty and
	and large-scale initial-condition uncertainty and
	nrediction systems. For example, many
	hydrological regimes can be sensitive to initial
	conditions and evaluate the signal of changing
	configurations. Additionally. hydrological models
	are already part of many meteorological models
	in the form of land surface schemes. HEPS can
	act as a communication platform between the
	traditional small scale hydrological community
	and the large scale hydrologists.
Data assimilation	Land surface analysis systems used in NWP are
	decoupled from the atmospheric analysis. They
	mainly rely on SYNOP data for screen level
	atmospheric parameters analysis (2m
	temperature and relative humidity) and snow
	analysis. Soil moisture is analysed based on
	screen level atmospheric parameters analysis
	using either an optimum interpolation approach
	(ECMWF, CMC, Meteo-France) or a simplified
	EKF approach (DWD). New generations of Earth
	observation satellites will be suitable for NRT
	ASCAT SENTINEL) They are expected to
	ASCAT, SENTINEL,
	temporal coverage/sampling) and relevance of
	data to be used for land surface analysis in NM/D
	Soil moisture and snow are of particular interest
	since they are at the interface between the
	atmospheric and the surface branches of the

Table 1: Contribution of the Hydrological Ensemble Prediction Experiment (HEPEX) to Thorpex

	hydrological cycle. Current activities conducted in particular at ECMWF, CMC and Météo-France focus on developing the use of satellite data for soil moisture analysis. These systems are expected to be extended to snow analysis and vegetation parameters analysis in the near future. They will provide a comprehensive land surface data assimilation system suitable for the purpose of consistent NWP and hydrological forecasting.
Societal, economic, and environmental benefits of improved forecasts of high impact weather	Hydrology is important for a large range of high impact weathers such as floods, draughts, peat and forest fires etc. It allows an easy and user focused way to <i>identify high impact weather</i> <i>forecasts</i> and <i>assess the impact of improved</i> <i>forecasts</i> systems. Stakeholder targeted advanced verification methods can be easily developed for example by aggregating of data to endusers targeted units, e.g. river basins, sub-units, and the development of corresponding methodologies. Hydrologists have considerable experience on aggregating, interpolation and error analysis of for example rainfall fields. An exchange of knowledge could be beneficial for both sides. A strong interface between the hydrological and meteorological community would foster applications of the meteo forecasts in hydrology and lead to <i>new user specific</i> <i>weather products</i> .