III Subjective probabilities

2. Bayesianism according to Bayes

III.2.1 Bayes's billiard table experiment

Bayes's experiment as it would have been set up by (de Moivre) a classicist:

Thomas Bayes' experiment

The length of the table is divided into 10 sections

III.2.3 "The Principle of Indifference"

""When you do not know the probabilities you light-heartedly assume they are equal!"

"The Principle of Indifference" applied on the EPS?

Member21

We have always assumed that the 50 perturbed EPS members are à priori equally likely for the simple reason that we have no way of finding out if some, after all, are more likely than the others.

Thomas Bayes' experiment

III.2.4 Updating of subjective probabilities

III.2.5 Laplace's Rule of Sucession

After 4 throws 3 are left and 1 right

What are the chances of having 2 *subsequent* <u>"left"</u> throws? <u>You are invited to bet</u>

According to the frequentist method the best estimate is $p^2=(3/4)^2=0.56$

$$p^2 = \left(\frac{N_{Left}}{N}\right)^2$$

25%

Some more books about uncertainty and intuitive statistics

END