III Subjective probabilities

2. Bayesianism according to Bayes

III.2.1 Bayes's billiard table experiment

Probability Course III: 2
Bologna 9-13 February 2015

Bayes's experiment as it would have been set up by (de Moivre) a classicist:

$0.7 \quad 0.3$
Throwing 3 balls
$\operatorname{Prob}($ RRR $)=3 \%$
Prob(RRL,RLR,LRR) =19\%

Prob(RLL,LRL,LLR)= 44\%
$\operatorname{Prob}(L L L)=34 \%$

Thomas Bayes' experiment

Probability Course III: 2
Bologna 9-13 February 2015

The length of the table is divided into 10 sections

Probability Course III:2

III.2.3 "The Principle of Indifference"

""When you do not know
the probabilities you
light-heartedly assume
they are equal!"
"The Principle of Indifference" applied on the EPS?

Thomas Bayes' experiment

Left

Left

Right

Let A_{i} be $x=0.4$ and $B=$ ball to the left

Probability Course III: 2
Bologna 9-13 February 2015

Probability Course III:2
Bologna 9-13 February 2015

Probability Course III:2
Bologna 9-13 February 2015

Probability Course III: 2
Bologna 9-13 February 2015

III.2.4 Updating of subjective probabilities

Probability Course III: 2
Bologna 9-13 February 2015

Probability Course III: 2
Bologna 9-13 February 2015

Probability Course III:2
Bologna 9-13 February 2015

Probability Course III:2
Bologna 9-13 February 2015

III.2.5 Laplace's Rule of Sucession

After 4 throws 3 are left and 1 right

What are the chances of having 2 subsequent "left" throws? You are invited to bet

According to the frequentist method the best estimate is $p^{2}=(3 / 4)^{2}=\mathbf{0 . 5 6}$

$$
\mathrm{p}^{2}=\left(\frac{N_{L e f t}}{N}\right)^{2}
$$

According to the Bayesian method (15\% chance that $p^{2}=0.81,21 \%$ $\mathrm{p}^{2}=0.64 \mathrm{etc}$) the
 best estimate of $p^{2}=\mathbf{0 . 4 5}$

$$
\mathrm{p}^{2}=\sum_{x_{i}=0}^{1} p\left(x_{i}\right) \cdot x_{i}^{2}
$$

Some more books about uncertainty and intuitive statistics

END

Probability Course III: 2
Bologna 9-13 February 2015

