III Subjective probabilities

III.4. Adaptive Kalman filtering

III.4.1 A 2-dimensional Kalman filter system

Probability Course III:4
Bologna 9-13 February 2015

The combination translation (A) and rotation(B) occurs under the
Corr $=\mathbf{A}+\mathbf{B} \cdot \mathbf{T f c}$

Probability Course III:4
Bologna 9-13 February 2015

Probability Course III:4
Bologna 9-13 February 2015

The variation of the coefficients indicate significant changes in model and/or environment

The variation of $\mathrm{X}(1)$ and $\mathrm{X}(2)$ during 2007 for three gridpoints filtered vs Rödkallen

Bologna 9-13 February 2015

III.4.2 Station and grid point can be far away!

Probability Course III:4
Bologna 9-13 February 2015

Kalmanfiltering ECMWF D+1 forecasts for München (447 m)

Probability Course III:4
Bologna 9-13 February 2015

Forecast for München, based on forecast for Feuerkogel before Kalman filtering
The 12 March 200812 UTC Ensemble forecast for 2 m temperature and verifying observations

Probability Course III:4
Bologna 9-13 February 2015

Forecast for München, based on forecast for Feuerkogel after Kalman filtering
The 12 March 200812 UTC Ensemble forecast for 2 m temperature and verifying observations

Probability Course III:4
Bologna 9-13 February 2015

Forecast for München, based on forecast for Feuerkogel before Kalman filtering
The 13 March 200812 UTC Ensemble forecast for 2 m temperature and verifying observations

Probability Course III:4
Bologna 9-13 February 2015

Forecast for München, based on forecast for Feuerkogel after Kalman filtering
The 13 March 200812 UTC Ensemble forecast for 2 m temperature and verifying observations

Probability Course III:4
Bologna 9-13 February 2015

III.4.3. The 2- or N-dimensional filter does not only correct mean errors ("biases") but also systematic overand under variability

Weather regime dependent forecast correction
2-D Kalman filtering of Rödkallen lighthouse vs nearest sea point

Probability Course III:4
Bologna 9-13 February 2015

Weather regime dependent forecast correction

2-D Kalman filtering of Luleá vs nearest sea point

Probability Course III:4
Bologna 9-13 February 2015

Probability Course III:4
Bologna 9-13 February 2015

The effect of 2D Kalman filtering on variance

The effect of 2D Kalman filtering on variance
Kalman filtered 2 m forecasts VT 12 UTC for a selection of Nordic stations

III.4.4 Further improvement of the spread

Probability Course III:4
Bologna 9-13 February 2015

The ECMSWF Kalman filters

The covariance matrices in Kalman filter used in "Ensemble Kalman Filtering" only has non-zero values in the diagonals

$\operatorname{cov}(A, A)$
 0

$0 \operatorname{cov}(B, B)$

But that is because its covariance matrices are in dimension not of 2,3 or 4 but in 10^{6}

Expected error dT $=A_{t}+B_{t} \cdot F c$

The Kalman filter will now provide a 2-dim variance matrix

$$
\operatorname{Cov}(A B)=\binom{\operatorname{cov}(A, A) \operatorname{cov}(A, B)}{\operatorname{cov}(B, A) \operatorname{cov}(B, B)}
$$

Variance $(\mathbf{d T})=\mathrm{E}\left\{\mathrm{dT}^{2}\right\}=$
$\mathrm{E}\left\{\left(\mathbf{A}+\mathbf{B} \cdot \mathbf{F}_{\mathrm{C}}\right)^{2}\right\}=\mathrm{E}\left\{\mathbf{A}^{2}\right\}+\mathrm{E}\left\{\mathbf{B}^{2}\right\} \cdot \mathbf{F}_{\mathrm{C}}{ }^{2}+2 \mathrm{E}\{\mathbf{A B}\} \cdot \mathbf{F}_{\mathrm{C}}$
yields $\operatorname{Var}(A)+F_{c}{ }^{2} \operatorname{Var}(B)+2 F_{c} \operatorname{Cov}(A B)$

A practical example:

The 2-dim Kalman filter system has found that the error equation

Expected error dT $=0.7+0.2 \cdot \mathrm{~F}_{\mathrm{c}}$

provides the best estimation, which for $\mathrm{F}_{\mathrm{c}}=5.0^{\circ}$ yields a correction of $d T=1.7^{\circ}$. Assume the covariance matrix

which, as representing small scale uncertainty, in an ensemble application, should be added to the large scale, synoptic-dynamic uncertainty.

III.4.5 The Joseph Form

Probability Course III:4
Bologna 9-13 February 2015

The covariance update equation:

"My" update of
$\begin{aligned} & \begin{array}{l}\text { coefficient and } \\ \text { covariances }\end{array}\end{aligned} \mathbf{P}_{t / t}=\left(\mathbf{I}-\mathbf{k}_{\mathrm{t}} \mathbf{f}_{\mathrm{t}}\right) \mathbf{P}_{\mathrm{t} / \mathrm{t}-1}\left(\mathbf{I}-\mathbf{k}_{\mathrm{t}} \mathbf{f}_{\mathrm{t}}\right)^{\mathrm{T}}+\mathbf{k}_{\mathrm{t}} \mathrm{r}_{\mathrm{t}} \mathbf{k}_{\mathrm{t}}{ }^{\mathrm{T}}$

$$
\mathbf{P}_{t / t}=\left(\mathbf{I}-\mathbf{k}_{\mathrm{t}} \mathbf{f}_{\mathrm{t}}\right) \mathbf{P}_{\mathrm{t} t-1}\left(\mathbf{I}-\mathbf{k}_{\mathrm{t}} \mathbf{f}_{\mathrm{t}}\right)^{\mathrm{T}}+\mathbf{k}_{\mathrm{t}} \mathrm{r}_{\mathrm{t}} \mathbf{k}_{\mathrm{t}}^{\mathrm{T}}
$$

$\underset{\text { most textbooks: }}{\text { But according to }} \mathbf{P}_{t / t}=\mathbf{P}_{\mathrm{t} / \mathrm{t}-1}\left(\mathbf{I}-\mathbf{k}_{\mathrm{t}} \mathbf{f}_{\mathrm{t}}\right)^{\mathrm{T}}$

Numerical methods in identification, control and signal processing: Kalman filtering

```
Marco Lovera
Dipartimento di Elettronica e Informazione
Politecnico di Milano
    lovera@elet.polimi.it
```

Metodi numerici per l'Automatica

Probability Course III:4
Bologna 9-13 February 2015

Symmetry of P: the Joseph form

The covariance propagation equations are given by

$$
\begin{gathered}
P_{k}(-)=\Phi_{k-1} P_{k-1}(+) \Phi_{k-1}^{T}+Q_{k-1} \\
P_{k}(+)=\left[I-\bar{K}_{k} H_{k}\right] P_{k}(-)
\end{gathered}
$$

The first equation already guarantees symmetry.
The second can be equivalently written as

$$
P_{k}(+)=\left[I-\bar{K}_{k} H_{k}\right] P_{k}(-)\left[I-\bar{K}_{k} H_{k}\right]^{T}+\bar{K}_{k} R_{k} \bar{K}_{k}^{T}
$$

which again guarantees symmetry.

NOTE: this is the least one can do in implementing a KF!

Propagation of roundoff errors in KFs (2)

Example: what happens if the sign of P changes?

t

END

Probability Course III:4
Bologna 9-13 February 2015

