III Subjective probabilities

III.4. Adaptive Kalman filtering

III.4.1 A 2-dimensional Kalman filter system

In reality the systematic error has stayed more or less the same, but defined by <u>two</u> coefficients, A and B

The variation of the coefficients indicate significant changes in model and/or environment

III.4.2 Station and grid point can be far away!

Kalmanfiltering ECMWF D+1 forecasts for München (447 m) ...against ECMWF D+1 EPS Control forecasts for Feuerkogeln 1362 m (model height) 30 Obs 12 UTC München DMO T399 Feuerkogel Kalman-2 25 Obs 00 UTC München DMO T399 Feuerkogel 20 Kalman-2 15 Temperature (C) 10 5 0 -5

Probability Course III:4 Bologna 9-13 February 2015

110

15 March - 30 May 2008

120

130

140

-10

80

90

100

Forecast for München, based on forecast for Feuerkogel before Kalman filtering

The 12 March 2008 12 UTC Ensemble forecast for 2 m temperature and verifying observations

Bologna 9-13 February 2015

Forecast for München, based on forecast for Feuerkogel a ft e r Kalman filtering

The 12 March 2008 12 UTC Ensemble forecast for 2 m temperature and verifying observations

Forecast for München, based on forecast for Feuerkogel b e f o r e Kalman filtering

The 13 March 2008 12 UTC Ensemble forecast for 2 m temperature and verifying observations

Forecast for München, based on forecast for Feuerkogel a ft e r Kalman filtering

The 13 March 2008 12 UTC Ensemble forecast for 2 m temperature and verifying observations

III.4.3. The 2- or N-dimensional filter does not only correct mean errors ("biases") but also <u>systematic</u> overand under variability

Weather regime dependent forecast correction

The effect of 2D Kalman filtering on variance

III.4.4 Further improvement of the spread

The ECMSWF Kalman filters

The covariance matrices in Kalman filter used in "Ensemble Kalman Filtering" only has non-zero values in the diagonals

cov(A,A) 0

0 cov(B,B)

But that is because its covariance matrices are in dimension not of 2, 3 or 4 but in 10⁶

Expected error dT = A_t + B_t - Fc

The Kalman filter will now provide a 2-dim variance matrix

 $Cov(AB) = \begin{pmatrix} cov(A,A) & cov(A,B) \\ cov(B,A) & cov(B,B) \end{pmatrix}$ Variance(dT) = E{ dT^2 } = $E\{(A + B \cdot F_{C})^{2}\} = E\{A^{2}\} + E\{B^{2}\} \cdot F_{C}^{2} + 2E\{AB\} \cdot F_{C}$ yields $Var(A) + F_{C}^{2} Var(B) + 2F_{C}Cov(AB)$

A practical example:

The 2-dim Kalman filter system has found that the error equation

Expected error $dT = 0.7 + 0.2 \cdot F_c$

provides the best estimation, which for $F_c=5.0^{\circ}$ yields a correction of dT = 1.7°. Assume the covariance matrix

Var(dT) = 0.0400 + 25.0.0025 + 2.5.0.0100 = 0.2025

or a standard deviation $dT = 0.45^{\circ}$

which, as representing small scale uncertainty, in an ensemble application, should be added to the large scale, synoptic-dynamic Probability Course III:4 Uncertainty.

III.4.5 The Joseph Form

The covariance update equation:

"My" update of coefficient and covariances

$$\mathbf{P}_{t/t} = (\mathbf{I} - \mathbf{k}_{t}\mathbf{f}_{t})\mathbf{P}_{t/t-1}(\mathbf{I} - \mathbf{k}_{t}\mathbf{f}_{t})^{\mathrm{T}} + \mathbf{k}_{t}r_{t}\mathbf{k}_{t}^{\mathrm{T}}$$

But according to
most textbooks:
$$\mathbf{P}_{t/t} = \mathbf{P}_{t/t-1} (\mathbf{I} - \mathbf{k}_t \mathbf{f}_t)^T$$

Numerical methods in identification, control and signal processing: Kalman filtering

Marco Lovera Dipartimento di Elettronica e Informazione Politecnico di Milano Iovera@elet.polimi.it

Metodi numerici per l'Automatica

The covariance propagation equations are given by

$$P_{k}(-) = \Phi_{k-1}P_{k-1}(+)\Phi_{k-1}^{T} + Q_{k-1}$$
$$P_{k}(+) = [I - \bar{K}_{k}H_{k}]P_{k}(-)$$

The first equation already guarantees symmetry. The second can be equivalently written as

$$P_{k}(+) = [I - \bar{K}_{k}H_{k}]P_{k}(-)[I - \bar{K}_{k}H_{k}]^{T} + \bar{K}_{k}R_{k}\bar{K}_{k}^{T}$$

which again guarantees symmetry.

NOTE: this is the least one can do in implementing a KF!

1/15/2008

Propagation of roundoff errors in KFs (2)

Example: what happens if the sign of P changes?

END