IV Use of probabilities

\author{

1. Decision making from probabilities
}

IV.1.1. A story from 1930's California

In the 1930's Irving Krick, a meteorologist from Cal Tech, established the first private weather forecast firm in in the USA in competition with US Weather Bureau (USWB).

Assume we are in a region with adverse weather 30% of the time: 9 days/month or 122 days/year.

This is not quite true for sunny

 California, but it will make the story more easy to tell and understand
But first some theory:

What to do when probability \mathbf{p} is issued?

1. If you do nothing there is a chance p to lose L.
2. On average the loss will be $p-L$
3. If you take protective action it will cost \mathbf{c}
4. Only if $p \cdot L>c$ is it worth while to take action
5.The "break even" point is $p=c / L$

Assume that adverse weather will cause a loss $\mathbf{L}=€ 100$ per day

For a certain occupation the cost of protection per day may range from $\mathbf{C}=\boldsymbol{\#}$ to $\mathbf{C}=\boldsymbol{€} \mathbf{1 0 0}$ (tre smeastreo

We can now calculate the average Expected Monetary Value per day, i.e. the average cost and loss per day if there is no forecast information

IV.1.2. The local weather forecasters at

 the USWB make very good forecasts with 80% being correct.All forecasts were well tuned:

The number of rain forecasts (30)

	Obs rain	Obs dry
Fc rain	20	10
Fc dry	10	60

over 100 days matches
the number of observed rain days (30)

Expected Monetary Value (EMV)

Fore casts	Obs rain	Obs dry
Fc rain	Hit	False alarm
Fc dry	Miss	

Fore casts	Obs rain	Obs dry
Fc rain	Cost of protection	
Fc dry	Loss	

EMV = Cost of protection • (Hits + false alarms) + Loss • Misses

Protective action taken

Protective action not taken

This matrix also reflects the actions and their consequences

Actions were taken

No actions were taken
From this it is possible to calculate the Expected Monetary Value (EMV)

With no forecast information you can chose to a) protect every day or b) never protect

The expected loss per day for different protection costs C

Irvin Krick's privately made forecasts were very bad

When the Weather Bureau promised the public sunny and mostly dry...
..the Irving Krick forecast to some of his clients said:
Probably rain

When the Weather Bureau warned the public about probable rain. . .
..the Irving Krick forecast to some of his clients said:
Probably dry

Verifications showed that Irvin Krick's privately made forecasts were very bad

Fore casts A	Obs rain	Obs dry
Fc rain	30	30
Fc dry	0	40

Over-forecasting rain (60 days vs 30)

Fore casts B	Obs rain	Obs dry
Fc rain	5	0
Fc dry	25	70

Under-forecasting rain
(5r days vs 30)

Still Krick's private weather firm earned him millions

Why?

A: The rain was over-forecast for the Hollywood studios because of their low c / L ratio.

Low cost: Staying at home and risk missing a fine day.
High loss: To have the stars and equipment unnecessarily taken out on the prairie in case of unpredicted rain.

B: The rain was under-forecast for the water authorities because of their high c / L ratio.

High cost: Spilling expensive water to lower the water levels to avoid over-filling or ability to adjust the prices.

High loss: Unplanned water spill or risk of damaging the dam in case of unpredicted rain.

Hollywood Low cost/Loss	Rain occurred	Staying dry
Rain forecast	Staying at Aome Action: staying at home (cheap)	Missing a shooting (minor (minor cost)
Dry forecast Action: take eut	No shooting expensive stars and equiment to the praire	
(great		
economic		
loss)		

Water indus. High cost/Loss	Rain occurred	Staying dry
Rain forecast Action: spilling expensive water	Not enough rain might fall	Unnecessary spill of expensive water
Dry forecast Action: not spilling expensive water	Unforeseen damage	

The expected loss per day when Krick over-forecast rain

The expected loss per day when Krick under-forecast rain

The expected loss per day for different protection costs C

IV.1.3. How the US Weather Bureau could have fought back using probabilities

If the US Weather Bureau had

 chosen to become less categorical it could also have served both low and high cost-loss customers

${ }_{\text {Fob }}^{\text {Ob }}$	R	-			R		Persistence		
R	15	15	R	R	7	0			
	15	55		??	23	40	Climatology		
					0	30	${ }_{\text {Fc }}^{\text {Ob }}$	R	-
$\begin{array}{\|l\|} \mathrm{Ob} \\ \mathrm{Fc} \end{array}$	R	-					R	5	0
R	10	20					??	25	60
	20	50		Ob	R			0	10
${ }_{\mathrm{Fc}}^{\mathrm{ob}}$	R	-		R	0	0	Pure guess (always uncertain)		
R	15	35	\Rightarrow	??	30	70			
	15	35			0	00			

It allows those who are not sensitive to rain to interpret the ??? as "it might not rain"

USWB	Obs rain	Obs dry				
Fc rain	10	0				
$? ? ?$	20	20				
Fc dry	0	50	\rightarrow	USWB	Obs rain	Obs dry
:---	:---	:---				
Fc rain	10	0				
Fc dry	20	70				

These are the EMV (total cost) for those who interpreted ??? as "it might not rain""

It allows those who are sensitive to rain to interpret the ??? as "it might rain"

USWB	Obs rain	Obs dry				
Fc rain	10	0				
$? ? ?$	20	20				
Fc dry	0	50	\rightarrow	USWB	Obs rain	Obs dry
:---	:---	:---				
Fc rain	30	20				
Fc dry	0	50				

These are the EMV (total cost) for those who interpreted ??? as "it might rain"

And them put them together . . .

I repeat:

Categorical

Fc	R	-
R	20	10
-	10	60

Non-categorical

Fc	R	-
R	10	0
$? ?$	$\mathbf{2 0}$	20
-	0	50

This is the matrix for those

Which ones of the 40 forecasts are more or less certain or uncertain?

Categorical			Non-categorical			Probabilistic		
			Obs Fc R	$\begin{array}{\|l\|} \hline R \\ \hline 10 \end{array}$	0	Obs Confidence certain	$\frac{R}{10}$	-
$\begin{array}{\|l\|} \hline \mathrm{Obs} \\ \mathrm{Fc} \end{array}$	R	-						
R	20	10	???	20	20	almost	8	2
	10	60		20	50	rather	6	4
						rather uncertain	4	6
						very uncertain	2	8
			ce	aint		certain	0	50

Or with probability numbers

IV.1.4. And now to the practise

How the USWB could gave swept the floor with Krick's private weather service if they had realised to potential of probabilistic forecasts

Decision matrix for different people when $\mathrm{P}=100 \%$

Gains for people with c/L almost 100\%

Decision matrix for people with c/L around 80\%

Ob Prob	R	-				
100	10	0				
80	8	2				
60	6	4				
40	4	6				
20	2	8				
0	0	50	\longrightarrow	Ob Fc	R	-
:---:	:---	:---				
R	18	2				
-	12	68				

Gains for people with c/L around 80\%

Decision matrix for people with c/L around 60\%

Ob Prob	R	-				
100	10	0				
80	8	2				
60	6	4				
40	4	6				
20	2	8				
0	0	50	\longrightarrow	Ob Fc	R	-
:---:	:---	:---				
R	24	6				
-	6	64				

Gains for different people when $P=60 \%$

Decision matrix for people with c/L around 40\%

$\begin{array}{\|c} \hline \text { Ob } \\ \text { Prob } \end{array}$	R	-			
100	10	0	Ob R Fc		-
80	8	2			
60	6	4	R	28	12
40	4	6	-	2	58
20	2	8			
0	0	50			

Gains for people with c/L around 60\%

Decision matrix for people with c/L around 20\%

Gains for people with c/L around 20\%

Different users benefit from

 different parts of the gain

Probabilities yield gains for all possible protection costs

END

