IV Use of probabilities

2. Some complications in the decision process

The Processes

Weather information has no value until it is used with success

in the end user's decision process

Importantissimo il passaggio di presentazione e la fiducia dell'utente

IV.2.1 The rationale to deterministically over-
 forecast weather events

Full probability distribution
(no particular bias)

Ob Prob	R	
100	10	-
80	8	2
60	6	4
40	4	6
20	2	8
0	0	50

\longrightarrow| Ob | R | - |
| :---: | :--- | :--- |
| Fc | | |
| R | 28 | 12 |
| - | 2 | 58 |

Decision matrix for people with c/L around 40\%

This is the same as if they had been given these deterministic forecasts directly

Since most people's cost/loss ratios lie below 40% a certain degree of over forecasting is unavoidable (necessary).

IV.2.2 Demand induced biases in the weather forecasts?

Up to 1896 the U. S. Weather Bureau supplied the New York Times with weather forecasts

Winw Olfe New dork elimes.

Probability Course IV:4
Bologna 9-13 February 2015

The great public baseball favourites in the 1890's were The New York Giants

Probability Course IV:4

In the paper

"TELL ALL THE TRUTH, BUT TELL IT SLANT"

- Testing models of media bias
http://sites.duke.edu/sarahtaylor/files/2014/10/Raymond-and-Taylor-Media-Bias.pdf
Collin Raymond at the University of Oxford and Sarah Taylor at Duke University
show that the weather forecasts to the New Yorkers in the late 1890's were biased according to the home matches of "The New York Giants"

1890 - May 1896

Away	Obs rain	Obs sun
Fc rain	130	102

Home	Obs rain	Obs sun	
Fc rain	81	67	148
Fc sun	46	239	285

June 1896-99

Away	Obs rain	Obs sun		
Fc rain	90	74		
Fc sun	45	164		
127				306

Home	Obs rain	Obs sun
Fc rain	42	39
Fc sun	36	148

Normal, "objective",
"scientific" over
forecast
Normal, demand driven over
forecast (no home ma

	$1890-96$				
	Us weather Bureau		\left\lvert\,-	Frequency obs rain	32%
:---	:---				
Fq fcst rain (team away)	37%				
Fq fcst rain (team at home)	34%				
Total fcst	36%	\right.			

Abnormal, demand driven un
forecast (when home matches!)

The bias of under-predicting rain (over-predicting sunshine) was more pronounced when "The New York Giants" had a good baseball season and less pronounced when they had a bad baseball season.

When supporters were less keen to watch them

Were the Danish wind forecasts "best"? -

Recommended: 20\% risk of storm (in time or location)

Better forecasts?

No over-forecasting:
Assumes a missed event is as bad as a false alarm

More useful forecasts?

Over-forecasting: Assumes a missed event is much worse than a false alarm

Better forecasts?

More useful forecasts?

No over-forecasting:
Assumes a missed event is as bad as a false alarm

Over-forecasting: Assumes a missed event is much worse than a false alarm

IV.2.3. Do we really obey the cost-loss model?

-What do you prefer?

-An 80\% chance of winning $€ 1000$ or
 -Get $€ 700$ directly in your hand?

According to the cost-loss model, the first alternative is to be preferred ($€ 800>€ 700$) However, most people, even professors in mathematical statistics, would take the $€ 700$

Pleasure

Pleasure

Consequences for the cost-loss model with a user with c/L-ratio 0.5

-Lose $€ 500$ for sure by protecting or a forecast 50% chance of losing $€ 1000$ or nothing at all? People tend to be risk seeking and choose the later ...which means they tend to neglect weather forecasts!
-Lose € 500 for sure by protecting or a forecast 80% chance of losing $€ 1000$ or nothing at all? People tend to be risk avoiding and choose the former ...which means they tend to prefer confident weather forecasts!

IV.2. 4 The 2005 Trento dice game

Probability Course IV:4

From the 2005 Trento course

Probability Course IV:4

1. A separate die is cast to define the probability of rain
2. It can be $16 \%, 33 \%, 50 \%, 67 \%$ or 83% (never 0\% and 100\%)
3. The participants can insure themselves against the weather
4. A die with the corresponding proportion of rain and sun is cast
5. With the sun coming up nobody loses, with rain those who have not insured

END

Probability Course IV:4

