III Subjective probabilities

1. Bayesianism

Probability Course III: 1
Bologna 9-13 February 2015

III.1.1 - The Emperor's New Cloth or The Solution to Everything?

Probability Course III: 1

According to a recent book Bayesianism is indeed the "Solution to Everything"

> the theory 黑
> \xrightarrow{n} that would not die how bayes' rule cracked - the enigma code, hunted down russian submarines \& emerged triumphant from two centuries of controversy sharon bertsch mcgrayne

The Theory That Would Not Die

How Bsyes' Fule
Cracked the
Enigms Code.
Hunted Down
Russian Submarines
\& Emerged Triumphant from Two Centuries of Controversy

SHARON BERTSCH MCGRAYNE

Bayesianism has been of good use to

- Prove that smoking causes lung cancer
- Predict winner in the US presidential elections
- Show that cholesterol causes heart attacks
- Find the author of a $18^{\text {th }}$ century document
- Improve the US insurance industry
- Crack the German Enigma code during WW II
- Track down a lost American H-bomb
- Hunt down Soviet submarines
- Investigate nuclear power safety
- Predict the shuttle Challenger accident
- . . . and much more!

III.1.2 The historical background to Bayesianism

Thomas Simpson 1710-61 Mathematician

David Hume 1711-76 "There is no First Cause"

Thomas Bayes 1701-61
Dissident clergyman

Richard Price
1723-91
Radical priest
Friend of the
American and
French revolutions
Supported women's rights
LII. An Effay towards folving a Problem in the Doctrine of Cbances. By the late Rev. $M r$. Bayes, F. R.S. communicated by Mr. Price, in a Letter to John Canton, A. M. F. R.S.

Dear Sir,
Read Dec. 23, T Now fend you an effay which I have ${ }^{1763}$. found among the papers of our deceafed friend Mr. Bayes, and which, in my opinion, has great merit, and well deferves to be preferved. Experimental philofophy, you will find, is nearly interefted in the fubject of it; and on this account there feems to be particular reafon for thinking that a communication of it to the Royal Society cannot be improper.

The possible roots to Thomas Bayes' 1757 theorem

- How to treat randomness
- Is God the Ultimate Cause?
- How to draw conclusions from observations

Simple
 laws or
 rules

Deduction
Induction
Complexities:
Observations
Random errors

The first Bayesian was Simone de Laplace 1749-1827

Bruno de Finetti
 (1906-85)

III.1.3 What is Bayesianism?

Probability Course III: 1
Bologna 9-13 February 2015

Frequentists and Bayesians differ in their definition of "probability"

Classical definition: from tossing coins or dice Both camps agree

Frequentist definition: the long-run frequency of a "repeatable event" Agreement

Bayesian definition: a person's degree of belief in an event, given the information available Sharp disagreements

Bayesianism consists of two parts, one noncontroversial, one highly controversial

NON-CONTROVERSIAL: The equation for conditional probabilities

$$
\operatorname{prob}(A \mid B)=\frac{\operatorname{prob}(A) \cdot \operatorname{prob}(B \mid A)}{\operatorname{prob}(B)}
$$

III.1.4 The non-controversial part - conditional probabilities

Classical probability

- - 0\% of cases
- - 3%-"-
- 00 24\% -"-
○ ○ O 73\% - " -
- - 22% of cases
- - 043% - "-
- 0029 \% -" -
000
6 \% - " -

Bayesian statistics address the problem:

- What is the unknown proportion of red and white balls?

Draw three balls at random 00
 What conclusions can we draw about the "true" probability?

Bayesian statistics deals with inverse probabilities

This can be solved by using the non-controversial "Bayes Rule" (to be derived)

$$
\operatorname{prob}(A \mid B)=\frac{\operatorname{prob}(A) \cdot \operatorname{prob}(B \mid A)}{\operatorname{prob}(B)}
$$

What does A|B mean?

$p(B \mid A)$ means probability of B
given A (within the A area) $=\mathrm{C} / \mathrm{A}$
$p(A \mid B)$ means probability of A given B (within the B area) $=C / B$

III.1.5 Deriving Bayes's equation for single outcomes

Deriving Bayes' theorem

Deriving Bayes' theorem

III.1.5 The controversial part - subjective probabilities

Bayesianism consists of two parts, one noncontroversial, one highly controversial

NON-CONTROVERSIAL: The derived equation for conditional probabilities

HIGHLY CONTROVERSIAL: The use of subjective probabilities (degrees of belief) and the use of this, term - the "prior"

$$
\operatorname{prob}(A \mid B)=\frac{\operatorname{prob}(A) \cdot \operatorname{prob}(B \mid A)}{\operatorname{prob}(B)}
$$

The controversy is not about

 mathematics but about philosophy!The controversial bit, "the prior" which can even be a pure guess

$$
p(A \mid B)=\frac{p(A) \cdot p(B \mid A)}{p(B)}
$$

The "prior" $p(A)+$ new information $p(B \mid A) / p(B)$ updates the probability of A, i.e. $p(A \mid B)$

Objections to subjective probabilities:

"Science and mathematics are supposed to be objective and not subjective"

The statistical community has since long been divided into Frequentists and Bayesians

Frequentist approach (the long-

 established majority):Probability is defined as the long-run frequency of a "repeatable event".

It developed a notion of confidence interval, with a probability that it is covering the true value.

Confidence intervals

Bayesian approach

(a growing minority): also
Probability is defined as a person's degree of belief in an event, given the information available.

It developed a notion of credible interval with a probability that the true value will be within the interval.

As a consequence three types of Bayesians have developed

1. Open Bayesians (openly using and promoting Bayes theorem)
2. Covert Bayesians (using Bayes' theorem without mentioning it)
3. Latent Bayesians (using Bayes theorem without being aware of it)

You had to "come out" as a Bayesian

III.1.7 Why do we need Bayesianism?

a)To allow subjective probabilities
b)To avoid over-confident probabilities
c)To allow updating of preliminary probabilities

"Far better having an

 approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can alwaysbe made precise". John W. Tukey

a1) Updating of subjective probabilities

a2) Updating of subjective probabilities

a3) Updating of subjective probabilities

Intuitive Bayesianism among weather forecasters

Mental pdf after carefully having considered all available information

Bayesianism is making inroad with NWP modellers

Combination of Gaussian prior \& observation - Gaussian posterior,

Metoffice - weights independent of values.

b) Updating of preliminary probabilities

Arthur L. Bailey

 accountanthad to start some insurance activity in the US in spite of lacking statistics on accidents

Had to start by guessing and then modify them in a Bayesian way

c) Avoids over-confident probabilities

 such as Concorde before 2000 being the safest air plane

Concorde Some other airline
.after the 2000 crash the most unsafe

A Bayesian would not have regarded Concord as the world's safest airplane before 2000

"Laplace Rule of Succession"

 prevents us from being overconfident since \mathbf{p} never takes values 0% or 100%
"-Never say never "

Other
suggestions
to "Laplace's
Rule""

Laplace

Roulstone
and Smith

$$
\begin{aligned}
& \mathrm{p}=\frac{1+N_{\text {rain }}}{2+N} \\
& \mathrm{p}=\frac{1 / 2+N_{\text {rain }}}{1+N}
\end{aligned}
$$

$$
\begin{array}{l|l|}
\substack{\text { Neil Bowler } \\
\text { UKMO }} & \mathrm{p}=\frac{1+N_{\text {rain }}}{3+N}
\end{array}
$$

Probability Course III: 1
Bologna 9-13 February 2015

III:2:8 Controversies over the Bayesian approach

1. Subjective probabilities (unavoidable)
2."Creditability" intervals (accepted in weather forecasting)
3.Complicated calculations (helped by new computers and the Markov Chain Monte Carlo simulations)

END

Probability Course III: 1
Bologna 9-13 February 2015

