I.Classical probabilities

I. 2 The power of randomness

I.2.1. What is "probability"?

Andrei Kolmogorov's definition of probabilities, 1933

1. Probability for any event = 100\%
2. Probability for one type of events = F/N
3. Probability for several mutually exclusive events = (F+G+H)/N

There are three types of probabilities: the classical, the frequentist and the Bayesian

1. The classical applies to the probabilities when tossing of a die (1/6) or a coin (1/2).
2. The frequentist applies to analyses of historical observation sets (to derive e.g. climatologically based probabilities, make verifications and statistical interpretation schemes).
3. The Bayesian, subjective or degree of belief is used by e.g. weather forecasters to summarize or update their preliminary assessment considering new available information.

Classical probabilities

rain 30\% dry 70\%

Selecting three balls yields

- - 3% of cases
- - o 19\% -" -
- o 0 44\% -" -

0 0 0 34\% -" -
... with a risk of 56% of misrepresentation

Ensemble of ∞ independent NWP

...on the other hand:

I.2.2 Why did it take so long for probability theory to develop?

Probability theory grew out of the interest in gambling

> But people have gambled since the last ice age or even before that - so why the delay??

Why did this knowledge not "spill over" into science?

Because people did not have any perception of randomness (except perhaps Cicero and some other Romans)

Galileo Galilee

Birth of classical probability theory

The sum of three dices seem to sum equally for 9 and 10

The last throws can be differently combined

$1+2+6=9$	6	$1+3+6=106$
$1+3+5=9$	6	$1+4+5=106$
$1+4+4=9$	3	$2+2+6=103$
$2+2+5=9$	3	$2+4+4=103$
$2+3+4=9$	6	$2+3+5=106$
$3+3+3=9$	1	$3+3+4=103$

10 is slightly more likely because 3-3-3 can only come in one version, 3-3-4 in three

Abraham De Moivre 1667-1754

From causes to effects
Deduction

THE
 DOCTRINE
 0 F
 CHANCES:

0 R
A Mcthod of Calculating the Probability of Events in Play.

\therefore 又
By A. De Mower I. R. S.
-

Direct probabilities Combinatorics

The Lisbon earthquake and tsunami 1755

made people start doubt the existence of an all mighty God that decided everything.

From 1750's ideas about randomness in science
Probability Course I: 2

I.2.3 Different degrees of determinism is still around

Five types of determinism (ataer cigerenzer eta 1 1989,1995)

1. Metaphysical determinism: Everything is already decided and there is no free will

Five types of determinism ${ }_{\text {after Cigeernere etal } 1989,1995)}$

1. Metaphysical determinism: Everything is already decided and there is no free will
2. Epistemological determinism: We can, at least in principle, predict the future

Five types of determinism (after cigerenzer eta 1 1989, 1995)

1. Metaphysical determinism: Everything is already decided and there is no free will
2. Epistemological determinism: We can, at least in principle, predict the future
3. Scientific determinism: We can predict the future as perfectly as we wish (if Only the Council gives us money to new computers)

Five types of determinism ${ }_{\text {after Cigerenzer etal 1 1989, 1995) }}$

1. Metaphysical determinism: Everything is already decided and there is no free will
2. Epistemological determinism: We can, at least in principle, predict the future
3. Scientific determinism: We can predict the future as perfectly as we wish
4. Methodological (or pragmatic) determinism: Perfect forecasts are not possible because of unknown factors

Five types of determinism ${ }_{\text {after Cigeernere etal } 1989,1995)}$

1. Metaphysical determinism: Everything is already decided and there is no free will
2. Epistemological determinism: We can, at least in principle, predict the future
3. Scientific determinism: We can predict the future as perfectly as we wish
4. Methodological (or pragmatic) determinism: Perfect forecasts are not possible because of unknown factors
5. Effective determinism: Although Heisenberg's uncertainty relation excludes forecasts on a molecular level it is less true at larger scales

I.2.4 Humans tend to underestimate the power of randomness and try to find causes

a) Regular patterns can deceive:

Tossing a die five times, then $\mathbf{2 5 2 1 6}$ is regarded as a random sequence but not the outcome $\mathbf{1 2 3 4 5}$

But both are equally likely! As is $\mathbf{6 6 6 6 6}$!
Humans have difficulties to realise that random processes can generate regular patterns
b) Winning in the National Lottery (in Britain)

Balls numbered from 1 to 99

Probability Course I:2
Bologna 9-13 February 2015

The first 49 numbers of the National Lottery in Great Britain (once a week)

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

The number of times the first 49 numbers of the National Lottery came up winning

11	16	12	15	21	14	15
9	12	11	17	13	11	16
13	16	16	13	9	20	12
15	12	10	17	15	10	12
13	15	13	13	14	14	10
11	9	15	4	13	16	15
14	23	19	15	13	17	11

On average 14, three below 10 and three above 20

c) More about the power of randomness

The chance of two persons in a group having the same birthday (not year) being 50% is fulfilled already for a group of 23 people.

$$
\begin{aligned}
\bar{p}(n) & -1 \times\left(1-\frac{1}{365}\right) \times\left(1-\frac{2}{365}\right) \times \cdots \times\left(1-\frac{n-1}{365}\right) \\
& =\frac{365 \times 364 \times \cdots \times(365-n+1)}{365^{n}} \\
& =\frac{365!}{365^{n}(365-n)!}=\frac{n!\cdot\binom{365}{n}}{365^{n}}=\frac{365 P_{n}}{365^{n}}
\end{aligned}
$$

d) Winning a lottery twice

With 10000 lottery tickets, once a week and 100 lotteries around the country at the same time, the chance that someone over a ten year period will win twice is 25%.

Assume person X is taking part in one lottery/week:
Probability that X will win once over ten years
$=50 \cdot 10 \cdot 1 / 10000=5 \cdot 10^{-2}=5 \%$
Probability that X will win twice over ten years

$$
=25 \cdot 10^{-4}=0.25 \%
$$

Probability that someone among the 100
lotteries will win twice $=0.25 \% \cdot 100=25 \%$

e) the probability of dying during a year

Annual probability of death (1/Y) by age and sex in Britain

For a Brit in my age it is $\approx 2 \%$ which means a daily risk of $0.02 / 365 \approx 1 / 20000$ or $5 \cdot 10^{-5}$
This Brit should wait until the very last to buy a $1 / 10000$ or 10^{-4} probability lottery ticket.

Buying a ticket three days before the draw he is more likely to be dead than to win!

I.2.5 The Slutsky-Yule effect

What looks like thirty year running averages of annual mean temperatures show interesting variations

300 random numbers and their running averages

The men behind the Slutsky-Yule Effect

Eugene Slutsky 1880-1948

USSR

George Yule 1871-1951

USA

END

