Summing up the course

A typical weather forecast problem:

Clouds are forecast to disperse and the temperature to drop

$$
+2^{\circ} \longrightarrow-4^{0}
$$

A classical, physical-meteorological, deterministic problem The weather forecasters are invited to "prove their value" compared to the NWP by modifying the forecast However, their "added value" might be of some other kind. . .

What looks like thirty year running averages of annual mean temperatures show interesting variations

What caused the warming up to 1815?

What caused the cooling thereafter?

And the subsequent gradual warming by almost 0.1° /decade?

Probability Course V:4
Bologna 9-13 February 2015

Correlated time periods

$\begin{aligned} & \text { 12-18UTC } \\ & 06-12 \\ & \text { IITC } \end{aligned}$	R	
R	12	8
	28	52

The timing is uncertain for a narrow band of rain that will pass. The total certainty is $<100 \%$ since the rain is geographically scattered Corr $=0.65$ Rain at all $=48 \%$
Probability Course v: 4 Persistent rain $=12 \%$ Bologna 9-13 February 2015

The initial transition matrix can be decomposed into a weighted sum of two new matrices

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
.62 & .38 \\
.15 & .85
\end{array}\right)^{\mathrm{n}}
\end{array}=\left(\begin{array}{cc}
.28 & .72 \\
.28 & .72
\end{array}\right)+\begin{array}{cc}
0.47^{\mathrm{n}} \\
\text { Eigen value }
\end{array}\right) \cdot\left(\begin{array}{cc}
.72 & -.72 \\
-.28 & .28
\end{array}\right)
$$

A common objection to the use of mean forecasts:

-It may lead to absurdities in bi-modal situations

A ship is leaving Gothenburg heading for the North Atlantic. Half of the indications point to taking the northerly route, half the Channel route Using the "ensemble" mean" would of course steer the ship towards Newcastle harbour!

But this is exactly what the ship routers would advice, as a "stand-by"

$$
B S=\frac{1}{N} \sum_{k=0}^{M} N_{k}\left(f_{k}-\bar{o}_{k}\right)^{2}-\frac{1}{N} \sum_{k=0}^{M} N_{k}\left(\bar{o}_{k}-\bar{o}\right)^{2}+\bar{o}(1-\bar{o})
$$

The second term is a resolution measure:

The forecaster honestly \vee believes in a 50% probability

A bad NWP model with under-variability might have lower RMSE than . . .

$\underbrace{\substack{\text { Variability } \\ \text { Atmosphere }}}_{\text {forecast lead time }}$
. . . a good NWP model with correct variability and therefore higher RMSE

Probability Course V:4
Bologna 9-13 February 2015

Intuitive Bayesianism among weather forecasters

Mental pdf after
carefully having
considered all
available information

Thomas Bayes' experiment

Left

Right

Probabilities in \%

Probability Course V:4 Bologna 9-13 February 2015

Which ones of the 40 forecasts are more or less certain or uncertain?

Categorical			Non-categorical			Probabilistic		
			Obs Fc R	$\frac{R}{10}$	-0	Obs Confidence certain	$\frac{R}{10}$	$\begin{aligned} & - \\ & \hline 0 \end{aligned}$
Obs Fc	R	-						
R	20	10	2?	20	20			
-	10	60						
			-	0	50			
			ncer			certain	0	50

Prospect Theory

Psychological Value (Utility)

They took an active responsibility for the problems

The effect of filtering on error and jumpiness
Comparison between single +120 h fcsts and ones lagged with previous two days'

Probability Course V:4
Bologna 9-13 February 2015

EPS gram for Bologna covering this week

In the 29 Jan forecast EPS Control has 14 mm , Ops only 1 mm

Can the EPS help us to confirm which one to trust?

There is a probability of rain which the Control and Ops may or may not support

The EPS continues consistently to warn about rain whereas the Control and Ops have "jumped", which they are "entitled" to do!

a) From the 2004 movie "Shall we dance?"

This shows that she is not an educated Bayesian!

Regression to the mean deceptions in weather forecast verification During an anomalous period, a non-biased NWP model will, due to random errors, display systematic mean errors increasing with forecast length.

Mean error for the 2m-temperature based on EPS
February 2011 - French stations

Probability Course V:4

