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II. Frequentist probabilities

II.1 The problem with the “mean”
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II.1.1 Probabilities is not 
the most controversial issue
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In statistics probability is 
called “the 2nd moment”
where “the 1st moment”
is the mean or median
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The 3rd moment is the skewness
(asymmetry) of the distribution.

-10 -5 0 +5Tmin= -1.2
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-10 -5 0 +5Tmin= -1.2

Mean, median or mode ?
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The probability information does not 
normally “hang in the air” – it is 
supplementing some sort of single 
value deterministic forecast:

-We expect winds around 9 m/s with 
a 20% possibility of gale force.
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The “Best Data” Paradox
©UK Met Office

Probabilities are difficult to interpret and use, but they are fairly 
simple to produce

Categorical values, on the other hand, are easy to interpret but , 
paradoxically, difficult to produce

Should they be the ensemble mean or median , 

or just DMO from a favoured NWP model?

Accurate, not “jumpy” and consistent with 
probabilities, but not always “physically realistic ”

Physically realistic but less accurate, very “jumpy ”
and not consistent with the probabilities
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The problem goes 250 
years back in time . . .
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II.1.2 Choosing the “best”
observation in the 1700’s
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Before the 1800’s there was a poor 
understanding of randomness in 
measurement errors

1. Scientists had the routine to select their “best” measurement

2. They didn’t understand that measurement errors add up and 
randomly cancel out

3. They disliked averages of observations since thes e did not 
normally agree with measured values
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18th century view on observation errors

Where is Jupiter?

¤

1. Astronomers in the 1600:s and 1700:s 
tried to find out which of their diverging 
observations was the “right” one

2. In the late 1700’ it was realized that 
that the observations should be 
combined even if the result did not 
agree with any of the observations

3. The first mathematical discussion 
on statistical inference
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1755

1740

Thomas 
Simpson
1710-61
Mathematician

Only accepted 50-60 years 
later thanks to the works 
by Lagrange and Gauss
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The Belgian 
meteorologist and 
statistician Adolphe
Quételet (1796-1874)  
introduced in the mid 
1800’s the concept of 
“The Average Man”
based on statistical 
averages from the 
population in Brussels.

He was criticised 
because there was 
nobody in Brussels who 
fitted this description
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The Average Man?

Not very skilful average. But . . . 
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The 
Average 
Girl?
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The “Average” Team Member
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II.1.3 The Average Forecast
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18

20th century discussion of forecast errors

What is the weather?

1. Meteorologists in the 1900:s and early 
2000:s still try to find out which of the 
diverging NWP is the “right” one

2. It is not always realized that the 
observations should be combined even 
if the result does not agree with any 
of the individual NWP

3. A discussion on statistical 
inference is still needed  . . .

¤
nwp

nwp

nwp
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50%

50%

A common objection to the use of mean forecasts:

-It may lead to absurdities in bi-modal situations

A ship is leaving 
Gothenburg heading 
for the North 
Atlantic. Half of the 
indications point to 
taking the northerly 
route, half the 
Channel route

Using the “ensemble 
mean” would of 
course steer the ship 
towards Newcastle 
harbour!
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50%

50%

But this is exactly what the ship 
routers would advice, as a “stand-by”

waiting for later, and hopefully, more reliable info rmation
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To repeat: The “Best Data” Paradox
©UK Met Office

Ensemble means are accurate, not 
“jumpy” and consistent with 
probabilities, but not necessarily 
“physically realistic”

Direct model output is physically 
realistic but, less accurate, very 
“jumpy” and not consistent with the 
probabilities
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As we will see later in the course, 
interpreting the mean error is 
among the most difficult and 
treacherous things in science

Even more difficult than interpreting 
the standards Root Mean Square 
Error (RMSE) and the Anomaly 
Correlation Coefficient (ACC)
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II.1.4 The Root Mean 
Square Error (RMSE)
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abbaba 2)( 222 −+=−

Forecast
error

Forecast
agreement

The 
atmospheric 

behaviour

The 
NWP model 

behaviour

A simple but powerful equation:
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The complete formula for RMSE
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From the RMSE to the MSE
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Simplifying the notations
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If we lived in an ideal world a lower 
RMSE would always be good and a 
higher RMSE always bad

But we don’t, so . . .

What looks good might be bad, what 
looks bad might be good (Tim Palmer)
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Forecast
error

The 
NWP model 
variability

The 
atmospheric 
variability

Forecast
agreement or “skill”

f=forecast
o=observation
c=climate of the 
verifying day

The Forecast
Error equation
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II.1.5 Understanding the Anomaly 
Correlation Coefficient (ACC) and 
its relation to the RMSE
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The RMSE:

The anomaly correlation coefficient:
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a

c

b

α

The second law 
of cosine

a2 =    b2 +   c2 – 2ab·cosα

))((2)()( 222 cacfcacfE −−−−+−=
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E
f-c

a-c

The RMSE in vector
Form (or 2nd Law of 
Cosine)

a2 = b2 + c2 – 2abcosβ
β

a

f

c

))((2)()( 222 cacfcacfE −−−−+−=

ACC=cosβ
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E
f-c

a-cβ

a

f

c

Insensitive 
to “biases”

“bias”
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16/02/2015 35

ZY

Xβ Vara

Var f

RMS error

c a

f

Using the cosine theorem as a shortcut to understand the 
relation between RMS error, anomaly correlation coefficient 
(ACC) and model activity (variability)

cosβ=ACC
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II.1.6 Interpreting the RMSE
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Anomaly correlations and climate reference

β

Small angle β =high
and “good” ACC

Climate
1960-1990

a
f

c
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Anomaly correlations and climate reference

β

a
f

c

Climate
1960-1990

Climate 1970-2000 is 
closer to current 
atmosphere conditions

Larger angle β
=lower and less
“good” ACC
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The RMS error saturation level

With decreasing forecast accuracy the angle ββββ will increase.
The maximum RMSE equals the variability times √√√√2

|f-a| =|a-c| √√√√2

90º
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2aA

aA

RMSE

Forecast range

persistence

“Atmospheric
variability”

Forecast Error Growth

”Pure guess”
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2aA

aA

RMSE

Forecast range

persistence

Pre-NWP forecaster

Best NWP 
in the world

”Tourist
Brochure”

Forecast Error Growth

”Pure guess”
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22

a

The magnitude of this term can not be 
affected by human intervention

The observed variability around the climatological mean

The interpretation of the (a-c) term
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The forecast variability around the climatological mean

22

f
Acf =−

The magnitude of this term can indeed be 
affected by human intervention

The interpretation of the (f-c) term
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cacf −−

The correspondence between (f-c) and (a-c)

This is the only term in the RMSE decomposition 
which is related to the predictive skill of the model

The interpretation of the “skill” term



45Probability Course II:1 
Bologna 9-13 February 2015

II.1.7 What looks good . . .
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2aA

aA

RMSE

Forecast range

persistence

Pre-NWP forecaster

Best NWP 
in the world

“Man-mix-machine” forecast

”Tourist
Brochure”

Forecast Error Growth

”Pure guess”
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It is not trivial to compare a 
human forecaster with a 
NWP system since they 
strive for different objectives
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The good versus the bad NWP model 

Z

Z

forecast lead timeforecast lead time

Bad model
Bad model 2

Good model 1 Atmosphere

Error Variability

The decrease in variability, and thus ability to si mulate the 
atmospheric motions, may give low (good) RMSE verifi cations

Good model
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The good versus the bad forecaster

Z Z

forecast lead timeforecast lead time

Bad forecaster

Good forecaster
Good forecaster

Bad forecaster Atmosphere

Error Variability

The decrease in variability, due to a skilful filte ring of non-predictable
atmospheric features, may yield low (good) RMSE ver ifications
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II.1.8 The Taylor diagram
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The Taylor Diagram
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Aa

Af
Err
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Aa

Af
Err
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Aa

Af
Err
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Aa

Af
Err
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Aa

Af Err

A Taylor 
Diagram
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II.1.9. The double penalty effect
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Sep 1995 Oct 1995
0

ECMWF

Model B
Model C

Model A

0

ECMWF

Root Mean Square Error (RMSE)
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Canada

Offenbach UKMOEPS 
Control
T63

ECMWF11 Oct 1995 12 UTC
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L
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ECMWF forecast

True path
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The ECMWF forecast scored worst 
because of 

The “Double Penalty Effect”
The forecast is punished both for having 
an anomaly where there isn’t one and not 
having an anomaly where there is one
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∆φ
ACC=cos∆φ=
cos(<90º)>0%

forecast

analysis

If the phase error < ½ wave length there is still positive skill

∆φ



63Probability Course II:1 
Bologna 9-13 February 2015

∆φ
ACC=cos∆φ=
cos90º=0%

forecast

analysis

If the phase error > ½ wave length it is better not to have 
the feature

∆φ
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←∆φ→
ACC=cos∆φ=
cos(180º)= -100%

forecastanalysis

If the phase error is one wave length there is complete 
anti-correlation

∆φ
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2cli

cli

RMSE

Forecast range

persistence

Pre-NWP forecaster

Best NWP 
in the world

“Modified” forecast

”Tourist
Brochure”

Forecast Error Growth
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END


