

Ensemble Forecasts Applied to Real-World Decision Making: the New York City Water Supply Operations Support Tool (OST)

James H. Porter, PhD 10th Anniversary HEPEX Workshop 24 June 2014 • College Park, MD

Presentation Outline

- Water supply system overview
- Operations Support Tool (OST)
- ✤OST use cases
- Summary

New York City Water Supply

- Three systems
 - Croton
 - Catskill
 - Delaware
- ✤ 19 reservoirs & 3 lakes
- ✤ 2,000 square mile watershed
- ✤ 8 upstate counties
- Serves 9 million people
 - 50% of New York State population
- Delivers 1.1 billion gal per day
- Unfiltered supply (Cat/Del)

Mission

Provide an adequate supply of high-quality drinking water

Multiple Objectives and Challenges

- Supply reliability
- Drinking water quality
- Tailwater fisheries
- Ecological flows
- Recreation
- Spill mitigation
- Operating costs
- Hydropower
- Long-term supply/demand
- Climate change

Town Tinker Tube Rental

Operations Support Tool

USGS Streamflow Data

National Weather Service Forecast Data

Near Real Time Data Sources

NYCDEP SCADA Data

NYCDEP Keypoint Water Quality Data

Near Real Time Network Water Quality Data

OST Databases

Raw Data Automated QA/QC Clean Data Automated Model Input Model Output Archived Historical Data

Graphical User Interface

OST Overview

System model – simulates entire water supply

- Demand
- Storage
- Diversions
- Releases
- Water quality
- Daily time step

Driven by ensemble inflow forecasts

NWS Hydrologic Ensemble Forecast Service (HEFS)

- Include meteorological drivers and snow pack data
- DEP funded accelerated development

How does OST work?

OST Use Cases

Ashokan Storage Objective

Gilboa Construction Support

Ashokan Storage Objective

Conditional Seasonal Storage Objective (CSSO)

Ashokan 2014 Snow Water and Void

Ashokan Reservoir Diversion and Release

Ashokan Reservoir

Catskill Aqueduct

Ashokan Release Channel

Ashokan Observed and Projected Storage - ARC 100 mgd

Ashokan Observed and Projected Storage - ARC 200 mgd

Ashokan Observed and Projected Storage - ARC 300 mgd

Ashokan Observed and Projected Storage - ARC 600 mgd

Probability of Refill

Ashokan 2014 Snow Water, Void, and Release

Ashokan West Basin

Ashokan West Basin

Gilboa Construction Support

Gilboa Construction Support

Schoharie Siphons Off/On - Simulation

Schoharie Siphons Off/On - Results

27

Schoharie Siphon Installation

Schoharie Siphon Installation

Schoharie Siphon Installation

Summary

- Use of ensembles is paradigm shift
 - Requires adaptation and education
 - Interpretation of output can be very confusing
- Nature of analysis driven by nature of problem
 - Need multiple ways to present ensemble output for decision making
- Ensembles shift some risk onto decision makers

Thank You!

Photo Credit: Doug Freese