

The European Flood Awareness System

From science to operations

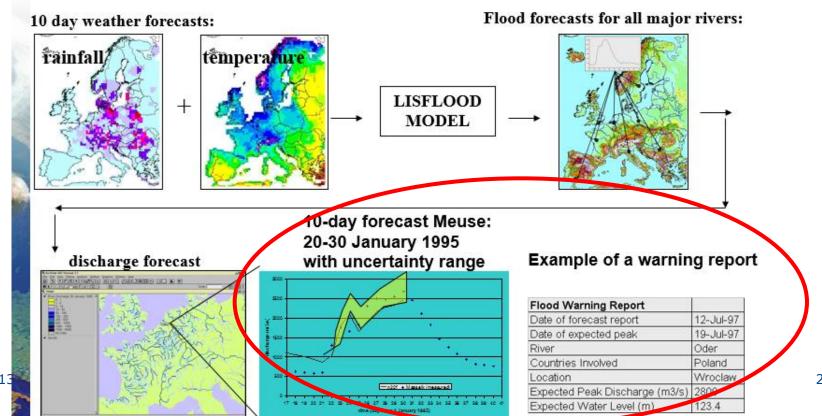
HEPEX 10th Anniversary Workshop, 24-26th June Maryland, USA

Joint Research Centre

www.jrc.ec.europa.eu

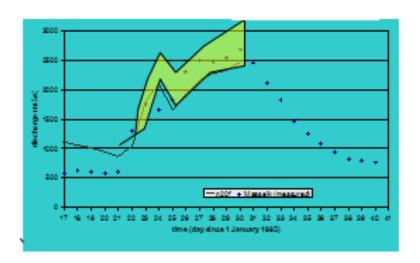
Jutta Thielen-del Pozo & EFAS team and supporters

Serving society
Stimulating innovation
Supporting legislation



Looking back in time - promoting the idea of EFAS back in 2002

TOWARDS A EUROPEAN FLOOD ALERT SYSTEM



EPS in theory, Deterministic in reality

We discussed the building of a probabilistic system ...

... but were still thinking deterministic

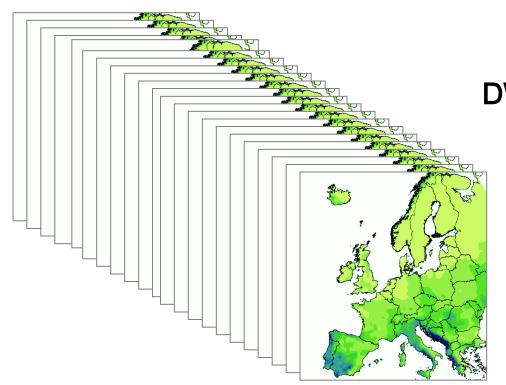
Flood Warning Report	
Date of forecast report	12-Jul-97
Date of expected peak	19-Jul-97
River	Oder
Countries Involved	Poland
Location	Wroclaw
Expected Peak Discharge (m3/s)	2800
Expected Water Level (m)	123.4

HEPEX guidance for EFAS and vice versa

- Demonstrate the reliability of hydrological ensemble predictions (HEPS) that can be used with confidence by emergency management and water resources sectors to make decisions that have important consequences for economy, public health and safety.
- EFAS, a useful testbed for HEPEX

European Flood Awareness System

European Flood Awareness System (EFAS)


(ERCC) - EU civil protection

> 40 national hydro-met partner services

Research networks (HEPEX, Horizon2020)

NWP inputs for **EFAS**

Deterministic (single) forecasts:

ECMWF (15 days, 15 km resolution)

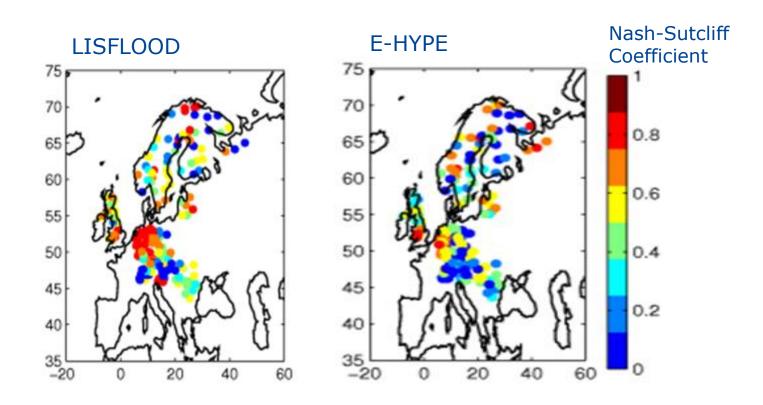
DWD (7 days, 40 km resolution)

Probabilistic (multiple) forecasts:

ECMWF-VAREPS (15 days, 51 members, 32 km resolution)

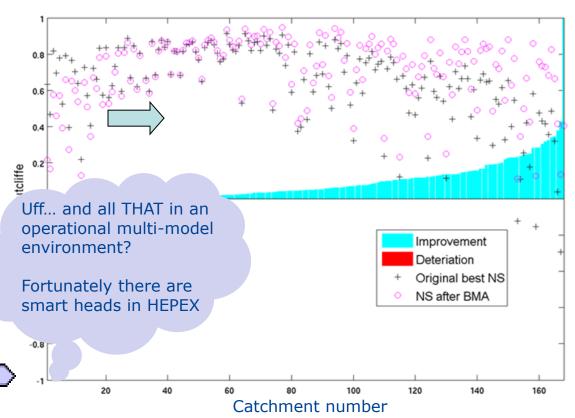
COSMO-LEPS (5 days, 16 members, 7 km resolution)

EFAS with multiple hydrological models?


	<u>Criteria</u>							
Model	Availability of code	User community	Input data requirements ¹	Flexibility to grid structure	Possibility of calibration	Flexibility in grid resolution	Facility to introduce Q observation stations	Pan-European model set up?
(D. Lawrence, pers. comm., 21 Mar 2014)	Open source http://www.cesm.ucar. edu/models/clm/	Active working group > 100 members, user base broader	netCDF <6h,~2/0.1° 18F,20S Hydro1K?	Regular or irregular spectral grids	In theory, but complex. No tools available	• 5-10km, but higher resolution possible. Routing 0.1-0.5 deg	• In place	 Set up for global applications, but can be run for any domain
E-HYPE (B. Arheimer, pers. comm., 25 Mar 2014)	Open source http://hype.sourcefora e.net	Main collaborations outside SMHI: UFZ (Germany) and IRSTEA (France). Results used by a broader group.	Text files D, Median 215km ² 2F,155 HydroSHEDS/Hydro1K	Sub-basin structure, but can be run on regular grid	> > 35 000 gauging stations included	 Sub-basin structure of varying size. 	• >35 000 gauging stations included	• Existing
G2G (R.J. Moore, pers. comm., 10 Apr 2014)	• only executables	The Flood Forecasting Centre (England & Wales), Scottish Flood Forecasting Service, Environment Agency, Natural Res. Wales, and more	BIL 15min, 1 km 2-3F,4S Corrected Hydro1K	• Runs with grid structure	Variety of tools available, both manual and automatic	• Yes	Observed discharge is used for data assimilation, comparisons and calibration	 Offline pan- European model set up. Can be set up for operational forecasts.
GWAVA (E. Dumont, pers. comm., 21 Mar 2014)	only executables and training courses available outside CEH	Water resources team in CEH Wallingford	- 1D, 0.5°/5′ ≥28 CCM2.1	• Runs with grid structure	Inbuilt calibration algorithm to obs. Q	Lower limit currently approx. 10 km	• In place	• Existing
H08 (N. Hanasaki, pers. comm., 23 Mar 2014)	• Open source http://h08.nies.go.jp/h 08/	National Institute for Environmental Studies, Thai Meteorological Dept., Princeton University, ISI-MIP, EU-WATCH	Plain binary format 6h, 1º/0.5° 8 inputs TRIP	• Runs with grid structure	No tools provided	• Flexible	No tools provided	 Set up for global application, high res. model set up for Thailand
HTESSEL	Open source/in house	ECMWF	1h, N/A	Runs with grid structure	Typically not calibrated	•Flexible	No tools provided	• Existing

++ 17 more models (from Wetterhall et al., 2014)

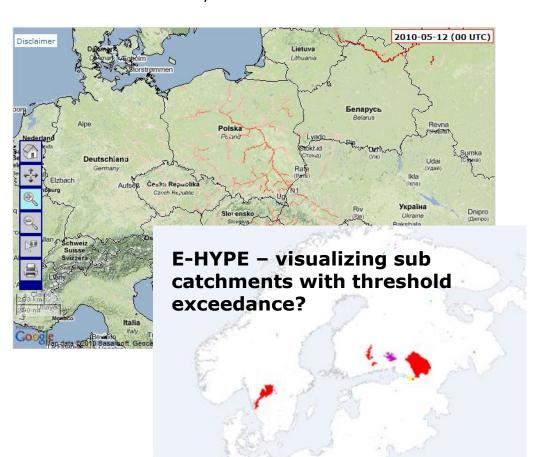
Comparison Lisflood E-Hype

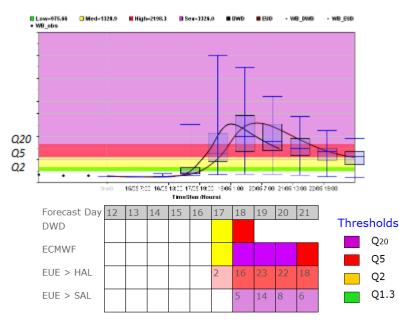


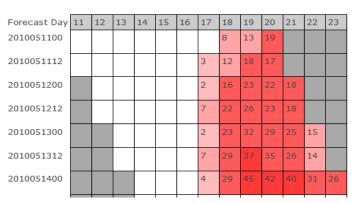
Initial study 1990-2010 (Wetterhall, 2014)

8

Bayesian model averaging of results

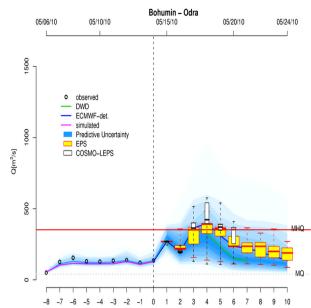

BMA weighted discharge time series (including HTESSEL) yields better performance in most catchments



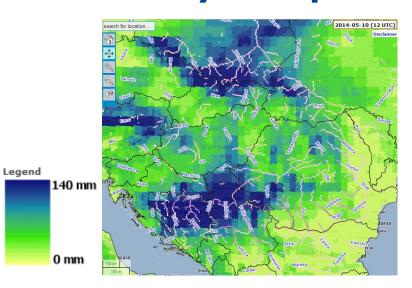

Visualising hydrological EPS

Time series of flood probability

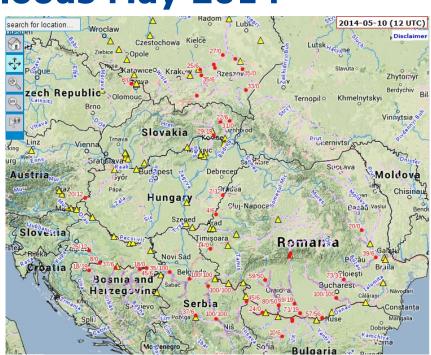
Flood probability exceeding critical threshold within the next 10 days



Towards predictive uncertainty


(Bogner and Pappenberger, WRR. 2010)

- Wavelet transformations
 - analyze scale dependences of the error time series
 - capture errors by nonlinear processes at different time scales (snowmelt, flash floods)
- Real-time correcting and updating through Vector AutoRegressive model with eXogenous Input (VARX) in the Wavelet domain
- Integrating the various sources of uncertainties: Bayesian Forecasting System (Krzysztofowicz, 1999)



Case study European floods May 2014

Forecasted accumulated precipitation from 10 – 20 May based on forecast from 10th May 2014

EFAS 12:00 forecast from 10th May indicating probability of exceeding 20 (5) year return period threshold in purple (red)

- Rainfall forecasts from 10th May: heavy rain in Balkan region from 14th May
- EFAS forecast shows high probabilities of severe flooding (>20 year, purple) for Bosnia,
 Serbia, Romania and Southern Poland

Decision making with EFAS on EU scale

Overview active EFAS warnings for 2014-05-15 12UTC forecast:

EFAS Flood/Watch/Flash Flood Watch issued

ERCC Activation

COPERNICUS rush model satellite requests

- 11– 16 May: 19 EFAS alerts to European Response Coordination Centre (ERCC), RS, BG, RO (BA is not an EFAS partner)
- 12-13 May: pre-tasking of satellites for COPERNICUS rush mode (rapid mapping of flooded areas) based on EFAS.
- 15th May (evening): BA and RS requested international assistance through EU Civil Protection mechanism
- 16th May: BA and RS request satellite information on flooded areas

Decision making HAS improved!

EFAS performance and skill - public information

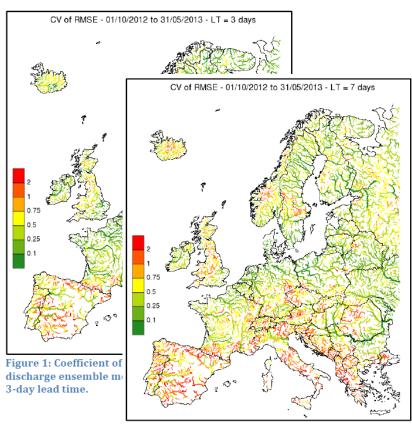
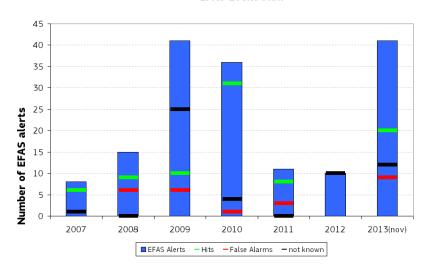



Figure 2: Coefficient of variation of the RMSE of ECMWF discharge ensemble mean from October 2012 onwards, 7-day lead time.

Туре	Forecast date	Issue date	Lead time*	River	Country
Alert	12/05/2013 12 UTC	13/05/2013	0	Po, section Adda - Oglio	Italy
Alert	16/05/2013 12 UTC	17/05/2013	4	Vorma	Norway
Alert	16/05/2013 12 UTC	17/05/2013	5	Lainioalven	Sweden
Watch	20/05/2013 12 UTC	21/05/2013	0	Adda	Italy
Alert	27/05/2013 12 UTC	28/05/2013	0	Unstrut	Germany
Watch	28/05/2013 12 UTC	29/05/2013	2	Sebes Koros, Crisul Repede	Hungary
Alert	30/05/2013 00 UTC	30/05/2013	3	Saale, below Elster	Germany
Alert	30/05/2013 00 UTC	30/05/2013	1	Neckar	Germany
Alert	29/05/2013 12 UTC	30/05/2013	4	Rhine	Germany

EFAS Event Skill

Skill information public on www.efas.eu

European Flood Awareness System

Operational Consortium

Dissemination

Hydro data collection

www.efas.eu info@efas.eu

Summary and conclusions

- EFAS has matured from a research project to a fully operational flood forecasting system on EU scale within 10 years
- Fostered use of hydrological ensemble prediction and mediumrange flood forecasting in Europe (short-medium scale, visualization, implementation)
- Organisation of operational hydrological services into an active network with regular exchange of information and training
- Fostered communication between hydrologists, civil protection and the science community
- HEPEX played a major role in the research development for EFAS and vice versa