Cost of Inflow Forecast Uncertainty for Day Ahead Hydropower Production Scheduling

HEPEX 10th University Workshop June 25th, 2014 NOAA Center for Weather and Climate

Thomas D. Veselka and Les Poch Argonne National Laboratory

Pacific Northwest NATIONAL LABORATORY

U.S. DEPARTMENT OF

Energy Efficiency & Water Pov

Water Power Program

Project Background Information

- The DOE Water Power Program is funding the development and deployment of the Water Use Optimization Toolset (WUOT)
 - Multi-lab effort (ANL, PNL, SNL)
 - Contains several integrated components
 - Objective: Produce more power with the same amount of water
- The day-ahead scheduling and real-time operations tool is named *Conventional Hydropower Energy and Environmental Systems* (CHEERS)
- CHEERS Simultaneously optimizes power and environmental objectives
 - Power: Maximize the value of energy production and ancillary services
 - Environment: Enhance habitats and improve river functionality
 - Granularity: 5 minute to 1 hour time step for 1 to 7 days at the generating unit level

CHEERS Framework

- Describes a system as a network of objects
 - Commodity (water & power) flows
 - Boundary nodes (inflows)
 - Storage nodes (reservoir)
 - Conversion nodes (turbine/generator)
 - Junction nodes (confluence)
 - Links (river, canal, power transport)
- Creates schedules when, where & how much
 - Water release from storage
 - Power generation
 - Ancillary services (regulation, spin, & non-spin)

Describes functionality and applies rules

- For individual objects, groups of objects, and/or the whole system
- For individual time steps or over specified time periods

Application: <u>Aspinall Cascade</u> of the Salt Lake City Area Integrated Projects

Aspinall Operating Limits Restrict Power Plant Operations

Blue Mesa		Blue Mesa		Morrow Point		Crystal				
 Maximum elevation Minimum elevation 	Month	Minimum Elevation (ft)	Maximum Elevation (ft)	Minimum Elevation (ft)	Maximum Elevation (ft)	Minimum Elevation (ft)	Maximum Elevation (ft)	Max Daily Change (ft)	Elev (ft) for 0.5 ft/Day Change	3-Day Elevation Change (ft)
- Seasonal minimum elevations	Jan	7,393.0	7,519.4	7,143	7,160	6,739	6,760	10	6,733	15
	Feb	7,393.0	7,519.4	7,143	7,160	6,739	6,760	10	6,733	15
 Maximum elevation 	Mar	7,393.0	7,519.4	7,143	7,160	6,739	6,760	4	6,748	6
Crystal	Apr	7,393.0	7,519.4	7,143	7,160	6,739	6,760	4	6,748	6
	May	7,393.0	7,519.4	7,143	7,160	6,739	6,760	4	6,748	6
- Maximum elevation	Jun	7,393.0	7,519.4	7,151	7,160	6,739	6,760	4	6,748	6
 Minimum elevation 	Jul	7,393.0	7,519.4	7,151	7,160	6,739	6,760	10	6,733	15
- Seasonal daily elevation change	Aug	7,393.0	7,519.4	7,151	7,160	6,739	6,760	10	6,733	15
limit as a function reservoir state	Sep	7,393.0	7,519.4	7,151	7,160	6,739	6,760	10	6,733	15
 Seasonal multiple day change limits 	Oct	7,393.0	7,519.4	7,143	7,160	6,739	6,760	10	6,733	15
	Nov	7,393.0	7,519.4	7,143	7,160	6,739	6,760	10	6,733	15
	Dec	7,393.0	7,519.4	7,143	7,160	6,739	6,760	10	6,733	15

Power Schedulers Currently Use Persistence to Forecast Short-term Aspinall Side Flows

Inaccurate May 4th Forecast

Inflow and Side Flow Forecast Error Computations

Assume persistence forecasting

Flows tomorrow and thereafter will be identical to yesterday

Use historical data

- Hourly data for the years 1999 through 2010
- Cascade reservoir elevations

Power and non-power water releases and reservoir elevations

Uncontrolled inflows into the top reservoir and side flows between reservoirs are based on a water mass balance equation and water storage volume-to-elevation curves

Challenges

- Water release rate measurement error
- Reservoir elevation measurement error
- Accuracy of volume-to-elevation curves

Eventually switch to the WUOT Hydrologic Forecasting tool

Shows promise to reduce daily forecast error

CHEERS Uses Buffers to Reduce Reservoir Violations Associated with Inflow Forecast Error

Crystal Water Side Flow Forecast Errors Are Used to Estimate Water Storage Buffer

Exceedance Probability (%)

One Statistical Distribution DOES NOT Fit all Situations

Seasonal differences: monthly distributions

- Forecast errors in Spring tend to be the highest
- Winter has the most reliable forecast

Time of day during Spring: night versus day

- Forecast errors in mid to late afternoon are relatively high
- Nighttime forecasts are more reliable

Error distributions are dependent on current conditions

- Low inflow conditions tend to have positively skewed distribution
- High inflow conditions tend to have negatively skewed distribution

Errors increase with longer projection time

> Day-ahead scheduling may be up to 4 days or more in advance

Summer thunderstorms occasionally result in large inflow under predictions

Separating Data into Different Classes Yields Better Schedules

Summary of Economic Impacts on Power

High Reservoir Condition

- Higher power production during low priced hours results in lower on-peak generation
- Sales of regulation down are reduced or eliminated
- Down-side generation potential is reduced, limiting responses to increases in variable resource (i.e., wind and solar) output

Middle Reservoir Condition

Forecast error has relatively little or no impact

Low Reservoir Condition

- Lower maximum power production
- Less power may be produced during the most valuable periods
- Potential sales of regulation up and contingency reserve services are reduced
- Up-side generation potential is reduced limiting responses to reductions in variable resource output

Thank you for your attention

Energy Efficiency & Renewable Energy