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This presentation introduces a new climate
index weighting method for ensembles

Bayesian Climate Index Weights
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Some properties
of the Bayesian
climate index
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method
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Average SST Anomalies
20 APR 2014 - 17 MAY 2014

CLIMATE INDEX WEIGHTING IN
ENSEMBLE FORECASTING



Historical weather or streamflow is often
used to make seasonal ensemble forecasts

Seasonal Ensemble Forecast Assign We/gts based on c[/mate orecast

Forecast Issued on 1 September

Each ensemble
trace associated -
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Assign weights based on climate state

Average SST Anomalies
20 APR 2014 - 17 MAY 2014

Days (after 1 September)

Climate Index Weighting

Each ensemble member is selectively
weighted to reflect the climate s
conditions at the time of the forecast
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Bayes Theorem uses new information to
update the prior ensemble distribution

Bayes Theorem

updated
distribution

t(ylo)=

likelihood prior
function distribution

f,(01y) (y)
f,(0)

Climate index @ at time of forecast

Average SST Anomalies
2014

Probability Density

Bayesian Updating
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Direct evaluation of the updated
distribution can be very challenging




Bayesian updating is more easily done with
a sample drawn from the prior distribution

Original Ensemble Forecast
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Reference: Smith and Gelfand (1992)
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APPLICATION TO BLUE NILE
ENSEMBLE FLOOD FORECASTS



Blue Nile flood volume is correlated with
the El Nino-Southern Oscillation (ENSO)

Blue Nile at Diem
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Nile Forecast System (NFS) flood volume
forecasts issued in June will be examined

Initial conditions
on forecast date

Historical
weather
available from
1952

Nile
Forecast
System

Multiple years of
historical weather
sequences

Post-processing
Bias correction

Ensemble forecast
of Blue Nile Flood
Volume

Pre-processing
Flow data assimilation

We used the Nile Forecast System to
generate retrospective forecasts
from 1992-2009

Post-processing
Climate index weighting

ENSO Index
(NINOA4.0)




The ensemble forecast has the information
needed to define the likelihood function

2001 Ensemble Forecast (Issued in June) for the Blue Nile Flood Volume
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The ensemble forecast
flood volume y; is
plotted along with the
NINO4.0 Index 6, for its
historical year




The ensemble forecast has the information
needed to define the likelihood function

2001 Ensemble Forecast (Issued in June) for the Blue Nile Flood Volume
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The ensemble forecast
flood volume y; is
plotted along with the
NINO4.0 Index 6, for its
historical year

The forecast likelihood
function f,(@]y) is
estimated directly by a
regression model
(LOWESS)




The ensemble forecast has the information
needed to define the likelihood function

2001 Ensemble Forecast (Issued in June) for the Blue Nile Flood Volume

Forecast Likelihood Function
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plotted along with the
NINO4.0 Index 6, for its
historical year
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The forecast likelihood
function f,(@]y) is
estimated directly by a
regression model
(LOWESS)




NINO4.0 Index, 6

Relative Bayesian Weight

-1.5

1.4+

12+

08

0.6

04F

0.2

Forecast Likelihood Function

éO ;O éO éO %0

Bayesian Climate Weighting

'.'.II oo @ -
."
.‘
[ ]
@
[ ]

30 m 50 50 70

Flood Volume, y (billion m®)

The Bayesian method weights more
heavily ensemble members with an
expected climate index (regression
line) close to the observed index &
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The kernel method weights more
heavily ensemble members with a
historical climate index close to the
observed index 6

The Bayesian method weights more
heavily ensemble members with an
expected climate index (regression
line) close to the observed index &
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Bayesian and Kernel methods can assign
very different weights

A Subset of Ensemble Forecasts for the Blue Nile Flood Volume
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The two climate index
weighting methods do
not always produce
similar shifts in
response to the
climate conditions




Forecast skill is higher for Bayesian climate

weighting for most thresholds
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Weighted Average Skill

SS (Bayesian): 0.24

The Kernel bandwidth
parameter was found
to maximizes SS for
the hindcasts

Still, the average skill
is higher for the
Bayesian method
(which requires no
hindcast calibration)




Bayesian Climate Index Weights

1.8 F ® [
ol p=075 &
1.4+ J

12+ ['
[ ——ORGIE—IBIOOEEE]

0.8} °
06| K p= 0
04t V4

02} ®

Relative Bayesian Weight

Forecast Variable, y

Climate Index Weighting Using a Bayesian Resampling Method

SOME PROPERTIES OF THE BAYESIAN
CLIMATE WEIGHTING METHOD



Bayesian weights adapt to the strength of
the relation with the climate index

Climate Index, 6

Hypothetical bivariate normal likelihood function
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Bayesian weights depend on the strength of the relationship




Bayesian weights adapt to the strength of
the relation with the climate index

Climate Index, 6

Hypothetical bivariate normal likelihood function

Bivariate Normal Likelihood Function
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Bayesian weights depend on the strength of the relationship

Weights strongly discriminate if the relationship is strong (o = 0.75)




Bayesian weights adapt to the strength of
the relation with the climate index

Climate Index, 6
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Bayesian weights depend on the strength of the relationship

Weights discriminate less as the strength of the relationship weakens (o =0.5)




Bayesian weights adapt to the strength of
the relation with the climate index
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Bayesian weights depend on the strength of the relationship

Weights discriminate less as the strength of the relationship weakens (o =0.25)




Bayesian weights adapt to the strength of
the relation with the climate index
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Bayesian weights depend on the strength of the relationship

Equal weights are applied if there is no relation with the climate index (o = 0)




Weights can be applied to ensemble traces
that do not have a historical climate index

Mismatching Historical Periods Example Ensemble Forecast
: : Forecast Likelihood Function
Ensemble forecast is created using a 4 . : : .
long historical record 3l

Ensemble Members

. . ‘ . ‘ . Historical
1960 1970 1980 1990 2000 2010 Year

Climate Index, 0

Climate Index

Climate index is unavailable for a

portion of the ensemble members
Forecast Variable, y

Bayesian climate index weights can still The forecast likelihood function f,(8]y)
be applied to all ensemble members can be estimated for the overlapping
historical period



Weights can be applied to ensemble traces
that do not have a historical climate index

Mismatching Historical Periods Example Ensemble Forecast
: : Forecast Likelihood Function
Ensemble forecast is created using a 4 . : : .
long historical record 3l
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Bayesian climate index weights can still The forecast likelihood function f,(8]y)
be applied to all ensemble members can be estimated for the overlapping
historical period



Weights can be applied to ensemble traces
that do not have a historical climate index

Mismatching Historical Periods Example Ensemble Forecast

Bayesian Climate Weighting Forecast Likelihood Function
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Weights can be assigned for the non- The forecast likelihood function f,(8]y)
overlapping period because f,(@4y;) is can be estimated for the overlapping

defined for all ensemble members historical period
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Climate Index Weighting Using a Bayesian Resampling Method

SUMMARY AND CONCLUSIONS



Bayesian climate index weighting is a simple,
self-calibrating, self-adjusting method

NINO4.0 Index

Relative Bayesian Weight

Forecast Likelihood Function

B

30 40 50 80 70
Flood Volume (billion m?)

Bayesian Climate Index Weights

p=075 7
&
,.
o
’ p=0
®

‘. L I

Forecast t Variable, y

Ensemble Members

1960 1970 1980 1990 2000 2010

Climate Index

The method only uses the ensemble members from
the forecast to estimate of climate index weights

The method can be applied to any ensemble forecast
directly (no hindcasts are needed for calibration)

The weighting adjusts to the strength of the
relationship with the climate index

If no relationship exists, the method defaults to
equal weighting

Applications are not limited to ensemble traces that
have historical climate index values

The likelihood function defines how all available traces
are weighted







