

Seasonal Hydrometeorological Ensemble Prediction System: Forecast of Irrigation Potentials in Denmark

Diana Lucatero^{1*}, Henrik Madsen², Karsten H. Jensen¹, Jens C. Refsgaard ³, Jacob Kidmose³

¹ University of Copenhagen, Copenhagen, Denmark
² DHI, Horsholm, Denmark
³ GEUS, Copenhagen, Denmark

HEPEX 10th Anniversary Workshop 26 June 2014 Maryland, USA

OUTLINE

- HydroCast Project and Seasonal Forecasting
- Irrigation permissions in Denmark
- ECMWF Seasonal meteorological EPS System 4
- $\hfill\square$ For the near future
- Summary and Conclusions

HydroCast Project and Seasonal Forecasting

Irrigation permissions in Denmark

How are the extraction for irrigations permits now defined? Impact of -10% on median of yearly minimum streamflow Issued for 15 years Areas where extraction must be reduced due to exceeded impact on streamflow

How are they expecting to define them?

Exploitable water resource with seasonal forecasting (example)!

Seasonal forecasting of irrigation potentials

- March: Preliminary forecast for planning of agricultural crops etc.
- Mid April: Final forecast for annual irrigation permissions
- During growing season: Possible adjustment of forecast according to weather conditions and pattern of ground water extraction

ECMWF Seasonal meteorological EPS System 4

TIME AVAILABILITY

- 20 years reforecast data, 1990-2013
- Forecast every month (01/MM/YYYY)
- 7 month forecast

FIELD\$ AVAILABLE

167 – 2 meter temperature, 6h, (deg K).

Solar Radiation

228 – Precipitation, 24 h, accumulated (mm).

ENSEMBLES AVAILABLE

51 members (02,05,08,11)

15 members (rest)

24 April 2014 – DMI, Copenhagen Dias 5

ECMWF Seasonal meteorological EPS System 4

□ ECMWF Seasonal meteorological EPS System 4: Downscaling, bias correction Linear Scaling of precipitation and temperature (Teutschbein and Seibert, 2012)

-> Corrects biases on the mean

-> Simplest approach, straightforward to implement

$$P_{contr}^{*}(d) = P_{contr}(d) \cdot \left[\frac{\mu_{m}(P_{obs}(d))}{\mu_{m}(P_{contr}(d))}\right] \qquad T_{contr}^{*}(d) = T_{contr}(d) + \mu_{m}(T_{obs}(d)) - \mu_{m}(T_{contr}(d))$$

 $\mu_m(P_{obs}(d))$ $\mu_m(P_{contr}(d))$ $P_{contr}(d)$ $P_{contr}^*(d)$ 24 April 2014 - DML, Copenha

- -> Monthly mean of daily precipitation, observed values m = 1, 2, ... , 12
- -> Monthly mean of daily precipitation, forecast values
- -> Raw forecast of daily precipitation
- -> Corrected forecast of daily precipitation

24 April 2014 – DMI, Copenhagen Dias 7

□ ECMWF Seasonal meteorological EPS System 4: TEMPERATURE

□ ECMWF Seasonal meteorological EPS System 4: Skill assessment

- Reliability Diagrams
- Brier Skill Score -> BSsys4 vs Bsclim
- Climatology -> 20 year observed data
- Verification experiments

-Verification A: Raw vs corrected ensembles, different lead times

Verification B: Corrected ensembles, different seasons
Probability thresholds -> a) <= below T b) >= above T (dry, cold)
(wet, warm)

- Verification C: Corrected ensembles, different regions in Denmark (west, east)

□ ECMWF Seasonal meteorological EPS System 4: Skill assessment

□ ECMWF Seasonal meteorological EPS System 4: Skill assessment, corrected

UNIVERSITY OF COPENHAGEN

Conclusions and Summary

- Assessment of meteorological inputs:
- Improvement of bias corrected ensembles
- Good skill for the first month lead time, decreases as time evolves
- Good skill for winter and spring precipitation, not so much for summer and autumn
- Good skill for temperature, except warm temperatures during summer (further investigation)

Combination of skillful meteo inputs + better initial conditions for better forecasting
Analysis of the influence of both

How do we translate probabilistic information about discharge and groundwater levels into efficient irrigation permit amounts?

- Decision making process

- Meeting and continuous feedback between the researh team and with potential users

UNIVERSITY OF COPENHAGEN

Thank you! QUESTIONS?

26 June 2014 – NCEP, MD, USA Dias 15