

Ensemble data assimilation for operational water quality forecasting

Sunghee Kim¹, Hamideh Riazi¹, Dong-Jun Seo¹, Changmin Shin²

¹Department of Civil Engineering, The University of Texas at Arlington, Arlington, TX, USA ²Water Quality Control Center, National Institute of Environmental Research, Inchon, Korea

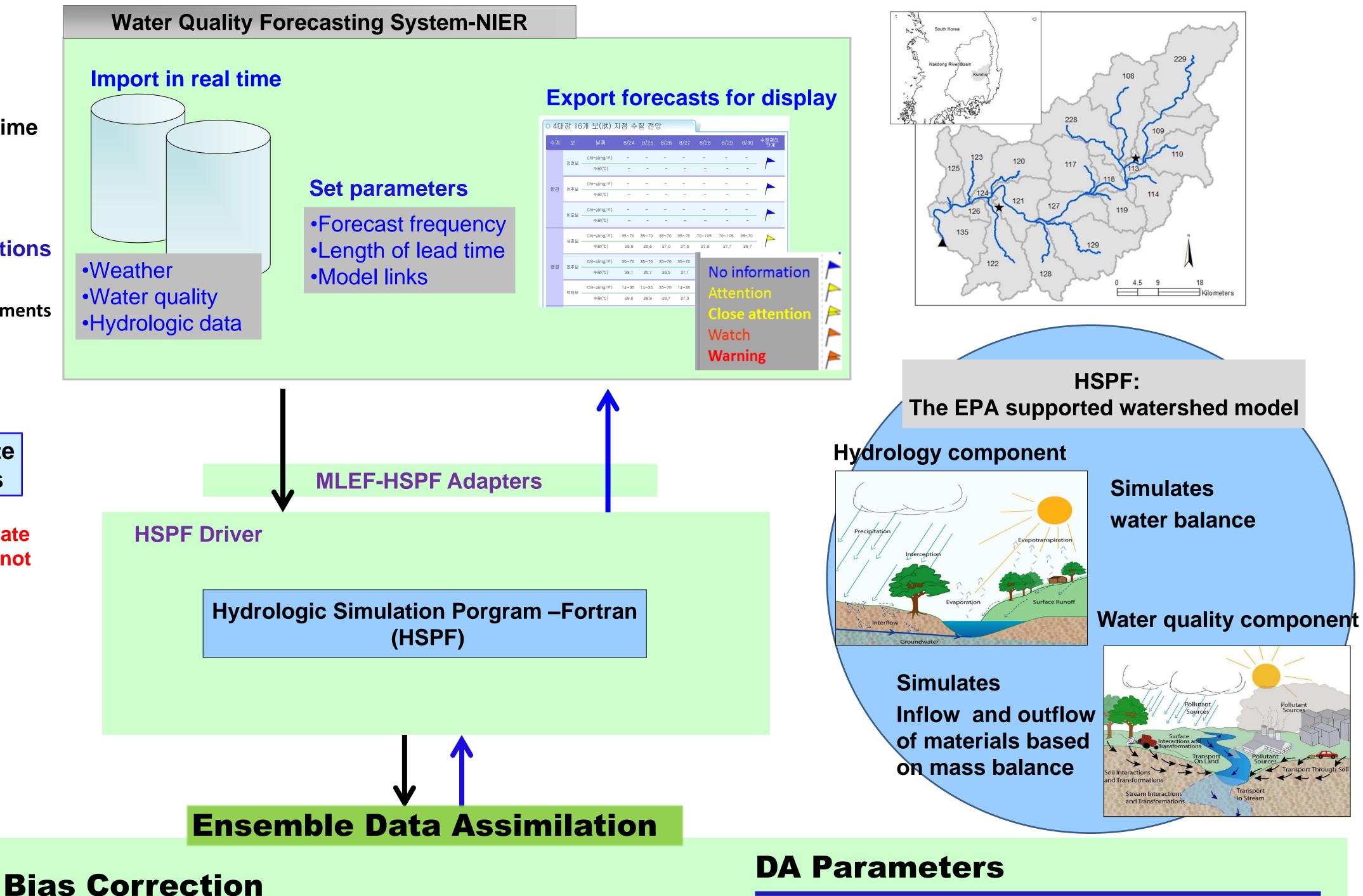
Abstract

Due to large dimensionality of the state vector and sparsity of observations, the initial conditions (IC) of watershed water quality models are subject to large uncertainty. To improve forecast accuracy and to quantify uncertainty in the ICs, an ensemble data assimilation (DA) procedure has been developed for the Hydrologic Simulation Program – Fortran (HSPF). To utilize all available hydrologic and water quality observations, it is important that the DA technique be able to handle strong nonlinearity in hydrologic and biochemical observation equations in addition to nonlinear model dynamics. The procedure, which is being implemented for operational use at the Water Quality Control Center of the National Institute of Environmental Research in Korea, uses maximum likelihood ensemble filter (MLEF) which combines strengths of variational assimilation (VAR) and ensemble Kalman filter (EnKF). The observations assimilated are water temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), ammonium (NH₄), nitrate (NO₃), phosphate (PO₄), chlorophyll-a (CHL-a) and streamflow. Verification of the control results has been carried out for the Kumho Catchment in the Nakdong River Basin in Korea (Kim et al. 2014). Verification of the ensemble results is currently under way using the Ensemble Verification System (EVS, Brown et al. 2010).

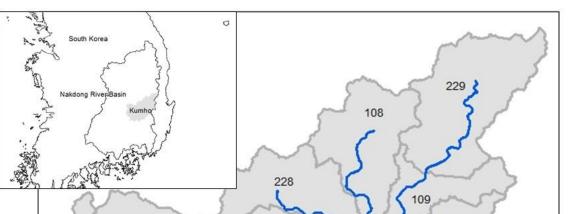
Objective

- Many sources of error exist in the end-to-end water quality forecast process
- Reducing uncertainty in the initial conditions (IC) is a costeffective way of improving forecast accuracy
- Current practice: Manual updating of ICs based on real-time

Operational Water Quality forecasting



Study Area (2110 km²)



- observations
- Need: Automatic updating using DA
- Issues:
 - Nonlinear hydrologic and biochemical observation equations
 - A large number of state variables, sparse observations

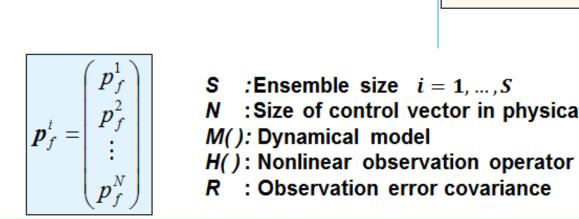
(e.g. 333 state variables using 28 HSPF state variables for 31 model segments for the Kumho Catchment in the Nakdong River Basin)

Module	Variable name	Observation data	Definition	
PERLND	CEPS	No	interception storage	
	SURS	No	surface (overland flow) storage	
	UZS	WS No i	upper zone storage interflow storage lower zone storage active groundwater storage	HSPF state variables
	IFWS			
	LZS			
	AGWS	No		
	GWVS	No	index to groundwater slope	
	SQO-NH ₄	No	storage of NH ₄ on the surface	
	SQO-NO ₃	No	storage of NO ₃ on the surface	
	SQO- PO ₄	No	storage of PO ₄ on the surface	Most HSPF state
	SQO- BOD	No	storage of BOD on the surface	variables are not
IMPLND	RETS	No	retention storage	
	SURS	No	surface (overland flow) storage	observed
	SQO-NH ₄	No	storage of NH ₄ on the impervious surface	
	SQO-NO ₃	No	storage of NO ₃ on the impervious surface	
	SQO- PO ₄	No	storage of PO ₄ on the impervious surface	
	SQO- BOD	No	storage of BOD on the impervious surface	
RCHRES	VOL	cal.	volume of water in the RCHRES at end of interval	
	TW	Yes	water temperature	
	DOX	Yes	dissolved oxygen concentration	
	BOD	Yes	biochemical oxygen demand concentration	
	NO ₃	Yes	dissolved concentration of NO ₃	
	TAM	Yes	dissolved concentration of TAM (incl. NH ₃ , NH ₄)	
	PO ₄	Yes	Dissolved concentration of PO ₄	
	РНҮТО	cal.	phytoplankton concentration (as biomass)	
	ORP	No	Dead organic refrectory phosphorus	
	ORN	No	Dead organic refrectory nitrogen	
	ORC	No	Dead organic refrectory carbon	

Maximum Likelihood Ensemble Filter (MLEF)

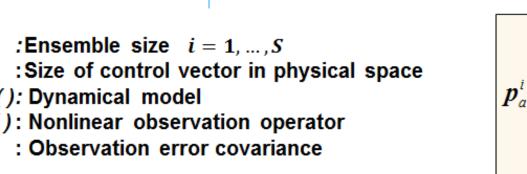
- Zupanski (2005)
- Ensemble extension of variational assimilation, but, no adjoint necessary
- Can handle nonlinear model dynamics
- Can handle nonlinear observation equation
- Algorithmically somewhat complex
- Minimizes cost function in ensemble space

Square root forecast error covariance Square root analysis error covariance



 $\mathbf{P}_{f}^{1/2} = [p_{f}^{1} ... p_{f}^{S}]$

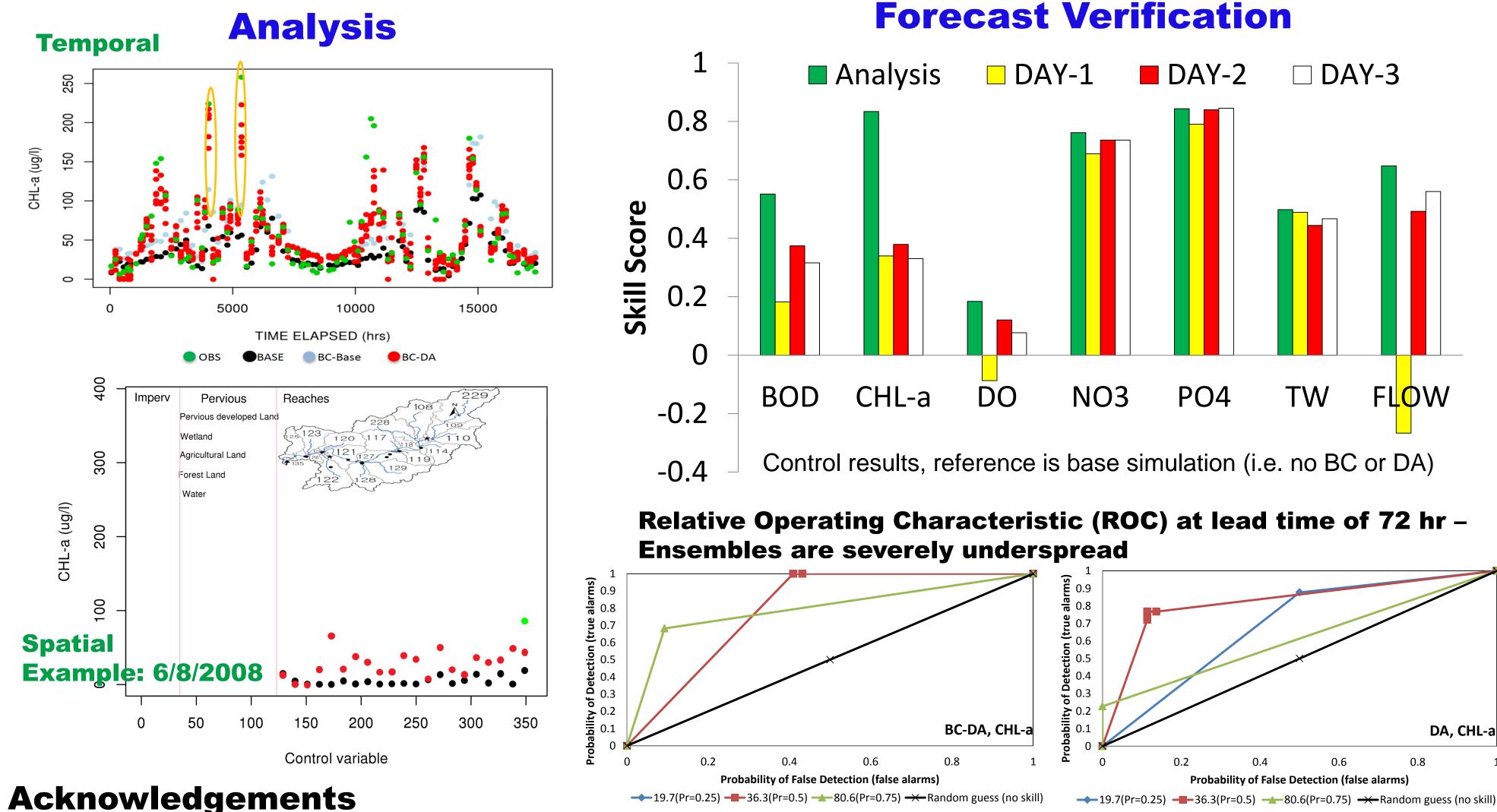
 $\boldsymbol{p}_{f}^{i} = M(\boldsymbol{x} + \boldsymbol{p}_{a}^{i}) - M(\boldsymbol{x})$



 $\mathbf{P}_{a}^{1/2} = [p_{a}^{1} \dots p_{a}^{S}] = \mathbf{P}_{f}^{1/2} (I+C)^{-1/2}$

 $z^{i} \approx R^{-1/2}H(x+p_{f}^{i})-R^{-1/2}H(x)$

Results (NO₃, CHL-a as examples)

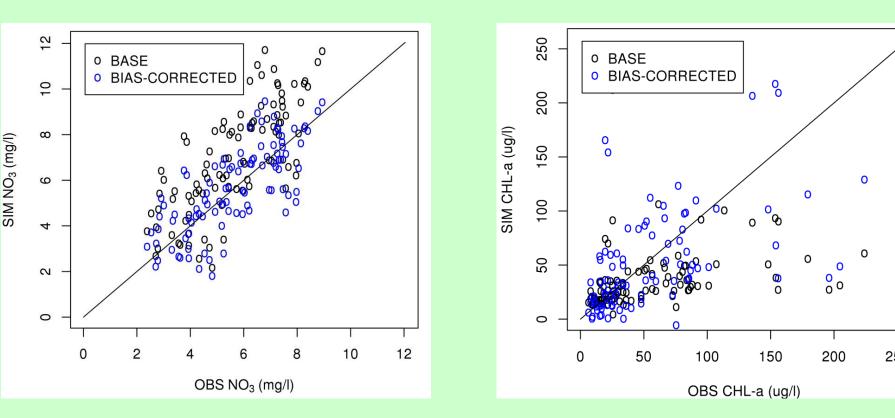


 $\begin{bmatrix} z_1^T z_1 \dots z_1^T z_s \end{bmatrix}$

Apply conditional bias-penalized linear regression to correct bias (Seo 2013)

Apply bias correction as a post processor to model prediction (BC-Base) Incorporate bias correction in the observation equation of DA (BC-DA)

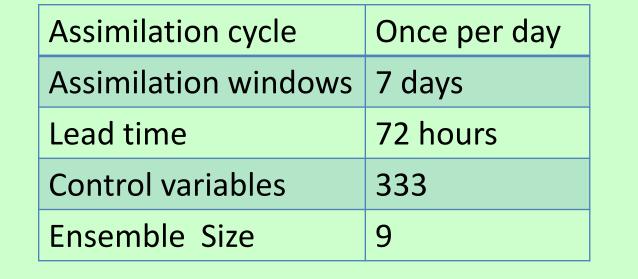
 $J = E_{Z,Y}[(Z - Y)^{2}] + \alpha E_{Y}[\{E_{Z}[Z | Y] - Y\}^{2}]$

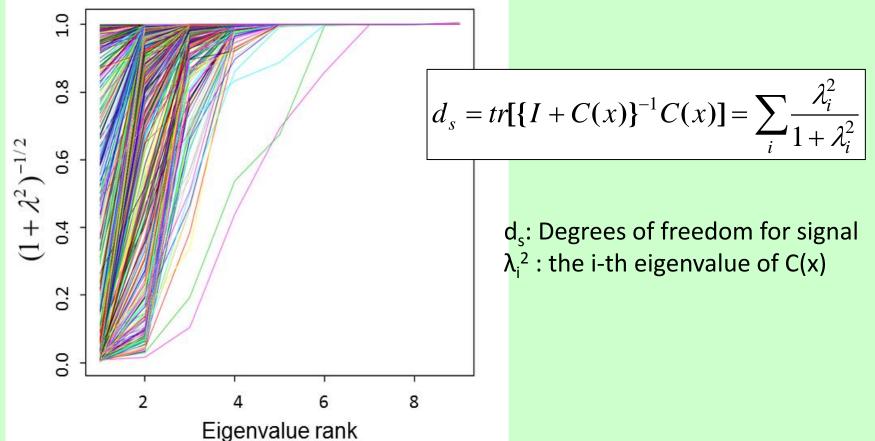


- NO₃ (left): the bias correction procedure reduces systematic first-order conditional bias effectively

- CHL-a (right): heteroscedastic errors still exist

Forecast Verification





Eigenvalue spectra of $[I + C(x_{opt})]^{-1/2}$ for all assimilation cycles in 2008 (above) indicates that about 7 ensemble members capture all information in all assimilation cycles

Conclusions

• The DA procedure adds significant to substantial predictive skill for all observed variables except DO. Reduction in root mean square error (RMSE) ranges from 11 to 60% for Day-1 through 3 predictions. The reduction is the largest for NO₃ and PO₄ at about 47 and 59%, respectively, owing largely to the bias correction component of DA. The second largest reduction is for TW at about 25%. • Correction of model bias as part of the observation equation is important.

• MLEF handles nonlinear observation equations very well.

Ongoing work

Address underspread

- Additional evaluation using multiple catchments
- Comparison of DA performance using observations from interior monitoring stations

References

Brown J.D., Demargne J., Seo D-J., and Liu Y. (2010) The Ensemble Verification System (EVS): a software tool for verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations. *Environmental Modelling and Software*, 25(7), 854-872. Kim, S., D.-J. Seo, H. Riazi and C. Shin, Improving water quality forecasting via data assimilation – Application of maximum likelihood ensemble filter to HSPF, submitted to Journal of Hydrology.

Seo, D-J. 2013. Conditional bias-penalized kriging, Stochastic Environmental Research and Risk Assessment, DOI 10.1007/s00477-012-0567-z.

Zupanski, M. 2005. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev. 133, 1710–1720.

The work reported herein is supported by the National Institute of Environmental Research, the Republic of Korea, under the Agreement of the Cooperative Study between Geosystem Research Corporation, Korea, and The University of Texas at Arlington. This support is gratefully acknowledged.