¿Cómo contar la predicción probabilistica?

How to tell probabilities in weather forecasting?

Part I: The problem with probabilities

Probability forecasting is

1. Politically controversial

Leaves the decisions to the decision makers and they will be unable to blame some external source

2. Scientifically controversial

Deterministic weather models versus probabilistic. The maths of probabilities is simple but different

3. Philosophically controversial

 What is "probability"? Frequentist "objective" vs Bayesian "subjective" statistics
1. Politically controversial

-We want more accurate deterministic weather forecasts - not some bloody index that tells how bad the forecasts are!

We all want more accurate deterministic weather forecasts.
But as long as they are not 100\% perfect, knowing their uncertainty improves our decisions.

"The Blame Game" or "The Passing of The Buck"

The future attitude of responsibility

2. Scientifically controversial

-Why did it take so long for
probability theory to develop?

In the 1500s probability theory grew out of the interest in gambling

> But people have gambled since the last ice age or even before that - so why the delay??

This knowledge did not "spill over" into science because people did not have any perception of randomness

The Lisbon earthquake and tsunami 1755

made people start doubting that an all mighty God decides everything.

From 1750's ideas about randomness in science

Poor understanding of measurement errors in the 1700's

1. Scientists (astronomers) had the habit of selecting their "best" measurement
2. They didn't understand that measurement errors did not add up and instead randomly cancelled out
3. They disliked averages of observations since these did not normally agree with individually measured values

The same is true for forecasters in our times

1. Many forecasters look for the Model of the Day
2. Many forecasters feel uncomfortable with more than one NWP
3. The ensemble mean is disliked because it does not represent a possible state of the atmosphere

This leads us into an even more difficult and controversial issue than probabilities:

-What about any categorical forecast information?
In statistics probability is called "The $2^{\text {nd }}$ moment" where "The $1^{\text {st }}$ moment" is the mean or median.

A "first" or "best" categorical estimate is supplemented by a standard deviation/probability:
"Wind around $9 \mathrm{~m} / \mathrm{s}$, with a 30% probability of gale"
Where do we get this from???

The "Best Data" Paradox

©UK Met Office
If probabilities are difficult to interpret and use, they are fairly simple to produce

Categorical values, on the other hand, are easy to interpret but, paradoxically, difficult to produce

Accurate, not "jumpy" and consistent with probabilities, but not always "physically realistic"
Should they be the ensemble mean or median, or taken from a favoured NWP model?
"Physically realistic" but less accurate, very
"jumpy" and not consistent with the probabilities

3. Philosophically controversial:

The statistical community has, with respect to probabilities, since long been divided into Frequentists and Bayesians

Limitation of the frequentist definition:

 Before summer 2000 Concord was regarded as the world's safest airplane with 0\% accidents (per flight hours). . .

$\frac{0}{100000^{\mathrm{h}}}<\frac{1}{1000000^{\mathrm{h}}}$

. . . after the summer 2000 crash it became the most unsafe $\frac{1}{100000^{7}} \frac{1}{1000000^{h}}$

An other example where the frequentist application breaks down

An other example where the frequentist application breaks down

An other example where the frequentist application breaks down

The subjective or Bayesian probability

A quick primer (from the 2004 movie "Shall we dance?")

This shows that she is not an educated Bayesian!

Some good books about uncertainty, Bayes and intuitive statistics

A week's course in "intuitive statistics"

Monday: The classical definition of probability
Tuesday: The frequentist definition of probability
Wednesday: The subjective probability definition

Thursday: Decision making from probabilities
Friday: The psychology of probabilities

Monday: The classical definition of probability helps us adding or dividing probabilities.

Tuesday: The frequentist definition of probabilities involves statistical calibration and verification of probability forecasts.

-How does the "proper" Brier score (BS) "know" my true opinion?

Anders Persson

Reducing BS by -0.13 if it stays dry and increasing BS by only +0.07 if it rains sounds like a reward by -0.06 thanks to my "tactical" decision.

But according to my true belief the chance of rain is 70% so those numbers have to be weighted:
$-0.13 .30 \%+0.07 \cdot 70 \%=+0.01$

Wednesday: The subjective probabilities find many applications in forecasting..

Thursday: Decision making from probabilities cannot be based on the cost-loss model only.
-What do you prefer?

-An 80\% chance of winning $€ 1000$ or
 -Get $€ 700$ directly in your hand?

According to the cost-loss model, the first alternative is to be preferred ($€ 800>€ 700$) However, most people, even professors in mathematical statistics, would take the $€ 700$

Pleasure

The 2005 Trento dice game

1. A separate die is cast to define the probability of rain
2. It can be $16 \%, 33 \%, 50 \%, 67 \%$ or 83% (never 0\% and 100\%)
3. The participants can insure themselves against the weather
4. A die with the corresponding proportion of rain and sun is cast
5. With the sun coming up nobody loses, with rain those who have not insured

Friday: The psychology of probabilities deals with the communication of uncertainty.

More about this in the $2^{\text {nd }}$ lecture

Questions?

