III Subjective probabilities

3. How to draw conclusions from small probabilities (extension from I.1.3)

III.3.1 The risk of overconfident probabilities

Probabilities of rain according to some reliable system

Probability

Most likely: First dry, later a major rain area will most likely pass.

Less likely: Neither the scattered rain showers nor the major rain area will pass

Very unlikely: Scattered rain showers will pass before the major rain area approaches.

100\%

100\%

Frequentist view: For $00-06$ UTC one (1) member has rain (i.e. 2 \% probability) and it has rain also for 06-12 UTC

If it really rains at $00-06$ UTC this implies that the probability of rain 06-12 UTC is 100%. But we feel it counterintuitive to base a 100\% forecast on just one member.

Bayesian view: We apply "Laplace Law of Succession".

We add two members to the 50, one with rain and one with dry weather.

III.3.2 Application of "Laplace's Rule"

The ECMWF has for long times applied "Laplace

 Rule of Succession" without be aware of it$$
\mathrm{p}=\frac{1+\text { Nrain }}{2+N}
$$

Because of the limited number of members (50) it is not realistic to assume the probability $=0 \%$ when no member has the event, nor that it is 100% when all have the event

1. It has been assumed that $4 \%(2 \%+2 \%)$ of the verifying observations are outside the spread

2. If no member has rain the risk is assumed to be 2%
3. If all members have rain the risk is assumed to be 98%

We will add two new members, one dry and one rainy and thus increase the total number to 52 members

We will add two new members, one dry and one rainy and thus increase the total number to 52 members

III.3.3 Case 1: rain followed by rain

We count in members and will

Number of members

Probabilities in \%

Probabilities in \%

Probability Course III:3

III.3.4 Case 2: rain followed by dry weather

Number of members

Probabilities in \%

Probability Course III:3

III.3.5 Case 3: rain followed by probability of rain

Number of members

III.3.6. Updating of the EPS probabilities in light of later observations?

Probabilities of > $\mathbf{1} \mathbf{~ m m}$ rain per 12 hours in London

100\%

Assume that we know for certain that it will rain in this period

Probabilities of > $\mathbf{1} \mathbf{~ m m}$ rain per 12 hours in London according to the ECMWF EPS of 10 September 2006

Number of EPS-members forecasting persistent or changing conditions $00-12 \mathrm{z}$ to $12-24 \mathrm{z} 11$ Sep.

From which a transition matrix can be formed

$12-00 \mathrm{z}$

R

Previous period R $00-12 z$

$$
\otimes(.18
$$

.82
$\otimes=d r y \quad \mathbf{R}=$ rain

Depending on if rainy or dry conditions proceed the 12-h period the origind probability 32% can be updated to 39% or 18\%

Probabilities of > $\mathbf{1 ~ m m}$ rain per 12 hours in London according to the ECMWF EPS of 10 September 2006

Updated probabilities from knowledge of occurred weather $\mathbf{1 2}$ hours earlier

END

