I.3 Adding or combining probabilities

I.3.1 Looking at EPS grams

I.3.2 Can we add probabilities?

We can easily add probabilities if they are

a) Exclusive

b) Independent

a) Andrei Kolmogorov's probabilities are exclusive and can easily be added

1. Probability for any event = 100%

2. Probability for one type of events = F/N

3. Probability for several mutually exclusive events = (F+G+H)/N

However, what are we after?..

Probability for strong winds <u>or</u> rain <u>or</u> frost = (F+G+H)/N

Probability for strong winds <u>and</u> rain <u>and</u> frost = **0**

b) Independency:

A die is thrown twice

The chance of <u>two</u> "6" is $1/6 \cdot 1/6 = 1/36 = 3\%$

The chance of <u>no</u> "6" is $5/6 \cdot 5/6 = 25/36 = 69\%$

The chance of <u>only one</u> "6" is $2 \cdot 1/6 \cdot 5/6 = 28\%$

Probability Course I:3 Bologna 9-13 February 2015 6 and none <u>or</u> none and 6

I.3.3 To come further we must introduce the Venn diagram

We can get some help from the "Venn diagram"

John Venn 1834-1923 Philosopher and logician

The chances of two "6" or none

The chance of having at least one "6"

The chance of having only one "6"

1.3.3 Correlations?

The correlation in a simple 2 x 2 table

	6	no 6
6	А	В
no 6	С	D

can easily be computed with

AD - BC

 $r = \frac{1}{\sqrt{(A+B)(A+C)(B+D)(D+C)}}$

Correlation = 0%

	6	no <mark>6</mark>
6	1/36	5/36
no 6	5/36	25/36

	1/6	5/6
1/6	1/36	5/ 36
5/6	5/ 36	25/ 36

	1/6	5/6
1/6	4/ 36	2/ 36
5/6	2/ 36	28/ 36

	1/6	5/6
1/6	0/ 36	6/ 36
5/6	6/ 36	24/ 36

Correlation: 0%

Correlation: 24%

Correlation: -25%

1.3.4 Real cases

Probabilities of rain according to some reliable system

Anti-correlated time periods

12-18UTC 06-12 UTC	R	-
R	0	20
-	40	40

The timing is uncertain for a narrow band of rain that will pass. The total certainty is < 100% since the rain is geographically scattered Corr = -0.20 Rain at all = 60% Probability Course I:3 Bologna 9-13 February 2015

12-18UTC 06-12 UTC	R	-
R	8	12
-	32	48

The timing is uncertain for a narrow band of rain that will pass. The total certainty is < 100% since the rain is geographically scattered Corr = 0.0 Rain at all = 52% Probability Course I:3 Bologna 9-13 February 2015

Correlated time periods

12-18UTC 06-12 UTC	R	-
R	12	8
-	28	52

The timing is uncertain for a narrow band of rain that will pass. The total certainty is < 100% since the rain is geographically scattered Corr = 0.65 Rain at all = 48% Probability Course I:3 Persistent rain = $1\frac{2}{4}$ %

Bologna 9-13 February 2015

Probabilities of rain according to some reliable system

Anti-correlated time periods

Anti-correlated scenarios not possible since 0.6+0.8 >1

Uncorrelated time periods

12-18UTC 06-12 UTC	R	-
R	48	12
-	32	8

The occurrence, intensity and timing is uncertain for geographically scattered rain showers

Corr = 0.00 Rain at all = 92% Probability Course I:3 Bologna 9-13 February 2015
Persistent rain = 4<u>8</u>%

Correlated time periods

The occurrence, intensity and timing is uncertain for geographically scattered rain showers

Corr = 0.61 Rain at all = 80% Probability Course I:3 Persistent rain = 60% Bologna 9-13 February 2015

Thumb rules for rain occurring <u>at all</u>:

1.Anti-correlated probabilities: $P = p_1 + p_2$

2. Uncorrelated probabilities: $P = 1 - (1-p_1)(1-p_2))$

Thumb rules for rain occurring <u>at all</u>:

- 1.Anti-correlated probabilities: $P = p_1 + p_2$
- 2. Uncorrelated probabilities: $P = 1 - (1-p_1)(1-p_2))$

3. Correlated probabilities $P \approx$ the largest (p₁,p₂)

Used in "fuzzy logic" or "fuzzy set theory" (Zadeh, 1978)

Thumb rules for rain to persist:

1.Anti-correlated probabilities: P = 0

2. Uncorrelated probabilities: $P = p_1 \cdot p_2$

Thumb rules for rain to persist:

- 1.Anti-correlated probabilities: P = 0
- 2. Uncorrelated probabilities: $P = p_1 \cdot p_2$

3. Correlated probabilities $P \approx$ the smallest (p₁,p₂)

Used in "fuzzy logic" or "fuzzy set theory" (Zadeh, 1978)

Anti-correlated time periods

The timing is uncertain for the arrival of a major rain area. The total certainty is < 100% since there is a small risk that the rain will be delayed Corr = -0.18 Rain at all = 86% Probability Course I:3 Persistent rain = 24%

Correlated time periods

12-18UTC 06-12 UTC	R	-
R	50	40
-	0	10

The timing is uncertain for the arrival of a major rain area. The total certainty is < 100% since there is a small risk that the rain will be delayed Corr = 0.37 Rain at all = 90% Probability Course I:3 Persistent rain = 50%

END