I. 3 Adding or combining probabilities

I.3.1 Looking at EPS grams

Probability Course I: 3

I.3.2 Can we add probabilities?

We can easily add probabilities if they are

a) Exclusive

b) Independent

a) Andrei Kolmogorov's probabilities are exclusive and can easily be added

1. Probability for any event $=100 \%$
2. Probability for one type of events $=\mathrm{F} / \mathrm{N}$
3. Probability for several mutually exclusive events $=(F+G+H) / N$

However, what are we after?. .

Probability for strong winds or rain or frost $=$ (F+G+H)/N

Probability for strong winds and rain and frost $=0$

b) Independency:

A die is thrown twice

The chance of two " 6 " is $1 / 6 \cdot 1 / 6=1 / 36=\mathbf{3} \%$ The chance of no " 6 " is $5 / 6 \cdot 5 / 6=25 / 36=\mathbf{6 9 \%}$ The chance of $\underbrace{\text { only }}_{\text {Probability Course : }: 3}{ }^{\circ}$ " is $2 \cdot 1 / 6 \cdot 5 / 6=28 \%$

I.3.3 To come further we must introduce the Venn diagram

We can get some help from the "Venn diagram"

John Venn 1834-1923
Philosopher and logician

The chances of two " 6 " or none

The chance of having at least one " 6 "

The chance of having only one " 6 "

1.3.3 Correlations?

The correlation in a simple 2×2 table

	6	no 6
6	A	B
no 6	C	D

can easily be computed with

$$
r=\frac{A D-B C}{\sqrt{(A+B)(A+C)(B+D)(D+C)}}
$$

Probability Course I: 3

	$1 / 6$	$5 / 6$
$1 / 6$	$1 / 36$	$5 / 36$
$5 / 6$	$5 / 36$	$25 / 36$

	$1 / 6$	$5 / 6$
$1 / 6$	$4 / 36$	$2 / 36$
$5 / 6$	$2 / 36$	$28 / 36$

Correlation: 0\% Correlation: 24\%

	$1 / 6$	$5 / 6$
$1 / 6$	$0 / 36$	$6 / 36$
$5 / 6$	$6 / 36$	$24 / 36$

Correlation: -25\%

1.3.4 Real cases

Probabilities of rain according to some reliable system

Probability

They can, however, mean quite different things which are not easy to discern

Anti-correlated time periods

$12-18 \mathrm{UTC}$ OG-12 UTC	\mathbf{R}	-
\mathbf{R}	0	20
-	40	40

The timing is uncertain for a narrow band of rain that will pass. The total certainty is $<100 \%$ since the rain is geographically scattered Corr $=-0.20$ Rain at all $=60 \%$

Persistent rain $=0 \%$

	R	
R	8	12
	32	48

The timing is uncertain for a narrow band of rain that will pass. The total certainty is $<100 \%$ since the rain is geographically scattered Corr $=0.0$ Rain at all $=52 \%$

Correlated time periods

	R	
R	12	8
	28	52

The timing is uncertain for a narrow band of rain that will pass. The total certainty is $<100 \%$ since the rain is geographically scattered Corr $=0.65$ Rain at all $=48 \%$

Probability Course I: 3 Bologna 9-13 February 2015

Probabilities of rain according to some reliable system

Anti-correlated time periods

Uncorrelated time periods

	R	-
R	48	12
	32	8

The occurrence, intensity and timing is uncertain for geographically scattered rain showers

Corr $=0.00$ Rain at all $=92 \%$
Probability Course I: 3
Persistent rain = 48\% Bologna 9-13 February 2015

Correlated time periods

	R	
R	60	0
	20	20

The occurrence, intensity and timing is uncertain for geographically scattered rain showers

Corr $=0.61$ Rain at all $=80 \%$ Probability Course : Persistent rain = 60\% Bologna 9-13 February 2015

Thumb rules for rain occurring at all:

1.Anti-correlated probabilities:

$$
P=p_{1}+p_{2}
$$

Rain at all 60\%
2. Uncorrelated probabilities:

$$
\left.P=1-\left(1-p_{1}\right)\left(1-p_{2}\right)\right)
$$

Uncorrelated:
Rain at all 52\%

Thumb rules for rain occurring at all:

1.Anti-correlated probabilities:

$$
P=p_{1}+p_{2}
$$

2. Uncorrelated probabilities:

$$
\left.P=1-\left(1-p_{1}\right)\left(1-p_{2}\right)\right)
$$

3. Correlated probabilities $\mathbf{P} \approx$ the largest $\left(p_{1}, p_{2}\right)$

Used in "fuzzy logic" or "fuzzy set theory" (Zadeh, 1978)

Thumb rules for rain to persist:

1.Anti-correlated probabilities: $\mathrm{P}=0$

2. Uncorrelated probabilities:
$P=p_{1} \cdot p_{2}$

Thumb rules for rain to persist:

1.Anti-correlated probabilities:

$$
P=0
$$

Correlated:
Rain to persist 12\%
2. Uncorrelated probabilities: $P=p_{1} \cdot p_{2}$
3. Correlated probabilities $\mathbf{P} \approx$ the smallest (p_{1}, p_{2})

Used in "fuzzy logic" or "fuzzy set theory" (Zadeh, 1978)

Anti-correlated time periods

$12-18 \mathrm{~T}$ OG-12 UTC	\mathbf{R}	-
\mathbf{R}	24	16
-	46	14

The timing is uncertain for the arrival of a major rain area. The total certainty is < 100\% since there is a small risk that the rain will be delayed Corr $=-0.18$ Rain at all $=86 \%$ Probability Course I:Persistent rain $=24 \%$ Bologna 9-13 February 2015

Correlated time periods

$12-18 U T C$ 06-12 UTC	\mathbf{R}	-
\mathbf{R}	50	40
-	0	10

The timing is uncertain for the arrival of a major rain area. The total certainty is < 100% since there is a small risk that the rain will be delayed Corr $=0.37$ Rain at all $=90 \%$ Probabiliy Course : Persistent rain = 50\% Bologna 9-13 February 2015

END

