I. Classical probabilities

I. 4 Markov chains

POPULAR SCIENCE

FEBRUARY
25 cents

[^0]
WEATHER RIGHT

While day-to-day weather forecasting enjoys reasonable accuracy, meteorologists have still to work out a basis for long-range prophecies. Nevertheless, Dr. C. F. Marvin, head of the U. S. Weather Bureau, is experimenting with a "scientific guesser." Small balls are marked for a certain kind of weather. The balls are thoroughly mixed and poured into troughs. Their sequence, depending solely upon laws of chance, has
proved strikingly similar to upon laws of chance, has
proved strikingly similar to actual weather records.

1932

Markov chains?

Markov chains as pedagogic, analytical and prognostic tool

1. Helps us understand probabilities and their additions and co-variations
2. Helps us analyse data in a new and interesting way
3. Might not stand up on its own, but provides a good complement to traditional statistical post-processing

A transition table for rain fall at StockholmArlanda airport (100 typical cases)

We note that the climatological rain probability is $\mathbf{2 8 \%}$

Transition probabilities

$\mathbf{R} \otimes$
\mathbf{R}
$\otimes$$\left(\begin{array}{ll}.62 & .38 \\ .15 & .85\end{array}\right)$

What can we say about the

 12 h transition? From 00-06 to 12-18?
$\mathbf{R} \otimes$
$\left.\begin{array}{ll}\mathbf{R} \\ \otimes \\ \otimes & .62 \\ . .38 \\ .15 & .85\end{array}\right)$

What can we say about the 12 h transition? From 00-06 to 12-18?

The matrice can also be regarded as an algebraic transition matrix

$\mathbf{R}=$ rain $\quad \otimes=$ dry
Next 6 hours
R

$\substack{\text { Last } 6 \\ \text { hous }}$	R
	$\otimes\left(\begin{array}{ll}.62 & .38 \\ .15 & .85\end{array}\right)$

Then the full force of $\mathbf{3 0 0 0}$ years of algebra can be applied, in particular matrix algebra

Some matrice algebra

A brief repetition of matrix algebra...

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{l}
5 \\
6
\end{array}\right]=\binom{[\cdot 5+2 \cdot 6}{-}=\binom{17}{-}
$$

A brief repetition of matrix algebra...

$$
\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right)=(1 \cdot 3+2 \cdot 5-)=(13-)
$$

A brief repetition of matrix algebra...

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right)=\left(\begin{array}{cc}
1 \cdot 3+2 \cdot 5 & - \\
- & -
\end{array}\right)=\left(\begin{array}{cc}
13 & - \\
- & -
\end{array}\right)
$$

Matrix multiplication yields a forecast

"Forecast" $12-18 \mathrm{~h}$ later

$$
\left(\begin{array}{ll}
.62 & .38 \\
.15 & .85
\end{array}\right)^{2}=\left(\begin{array}{ll}
.44 & .56 \\
.22 & .78
\end{array}\right)
$$

The matrix multiplication continues...

$$
\left(\begin{array}{ll}
.62 & .38 \\
.15 & .85
\end{array}\right)^{4}=\left(\begin{array}{ll}
.33 & .67 \\
.26 & .74
\end{array}\right)
$$

After repeated multiplications the values converge towards the "climate"

$$
\left(\begin{array}{ll}
.62 & .38 \\
.15 & .85
\end{array}\right)^{8}=\left(\begin{array}{ll}
.72 & .28 \\
.72 & .28
\end{array}\right)
$$

Matrix $=$ climate matrix + residual

Persistence Variability

$$
\left(\begin{array}{ll}
.85 & .15 \\
.38 & .62
\end{array}\right)^{N}=\left(\begin{array}{cc}
.72 & .28 \\
.72 & .28
\end{array}\right)+0.47^{N}\left(\begin{array}{cc}
.28 & -.28 \\
-.72 & .72
\end{array}\right)
$$

Similarities with forecast models:

$\left.\begin{array}{rl}\text { Obs/analysis } \\ \left(\begin{array}{ll}1 & 0\end{array}\right) \\ \text { Rain }\end{array}\right)\left(\begin{array}{ll}.62 & .38 \\ .15 & .85\end{array}\right)=\left(\begin{array}{ll}.62 & .38\end{array}\right)$
...more examples:

Left eigenvector and -value

$$
\begin{aligned}
&\left(\begin{array}{ll}
.28 & .72
\end{array}\right)\left(\begin{array}{ll}
.62 & .38 \\
.15 & .85
\end{array}\right)= \\
&=\left(\begin{array}{ll}
.28 & .72
\end{array}\right)=1 \cdot\left(\begin{array}{ll}
.28 & .72
\end{array}\right)
\end{aligned}
$$

Right eigenvector and -value

$$
\left(\begin{array}{ll}
.62 & .38 \\
.15 & .85
\end{array}\right)\binom{1}{1}=\binom{1}{1}=1 \cdot\binom{1}{1}
$$

The initial transition matrix can be decomposed into a weighted sum of two new matrices

END

[^0]: SPEEDY SKI-CAR Rides Winter Snows See Page 61

