II. Frequentist probabilities

II. 2 Verification of probability forecasts

II.2.1 What is a good probability forecast?

Probability The average evolution of probability values

Observed rainfall (radar) Probability forecast 1 Probability forecast 2

A scientist at a meeting showed these images: The radar observed rain fall and the probability forecast from system 1

And then he showed the forecasts from system 2 Are they worse??

Answer: -We cannot say

1.It is only one forecast

2.If rain only fell when the probabilities were > 40\% and not when they were below, something is wrong

The reliability diagram

Good sharpness $=$ forecasts draw towards $\mathbf{0 \%}$ and $\mathbf{1 0 0 \%}$

Good reliability, but poor sharpness

Do not confuse "sharpness" and "resolution"

The resolution

II.2.2 The Brier Score (BS)

The Brier score

BS and RMSE have identical mathematical structures

The notation of the Brier score can be simplified as with RMSE

$$
\begin{aligned}
& B S=\overline{(p-o)^{2}} \\
& E^{2}=\overline{(f-a)^{2}}
\end{aligned}
$$

II.2.3 Decomposition of the Brier score

Two alternatives, Murphy (1983) which is very quoted but rarely used, or one similar to the RMSE decomposition

The Non-Murphy decomposition is identical to the RMSE one:

$B S=\overline{(p-o)^{2}}=$

$$
\overline{(p-\bar{o})^{2}}+\overline{(o-\bar{o})^{2}}-\overline{2(p-\bar{o})(o-\bar{o})}
$$

Atmospheric variability

"Sharpness" Model variability

$(p-\bar{o})^{2}$

"Reliability" or "skill"

$$
\overline{2(p-\bar{o})(o-\bar{o})}
$$

	$0-\bar{o}$	$1-\bar{o}$
$p_{1}-\bar{o}$	45	5
$p_{2}-\bar{o}$	7	3
$p_{3}-\bar{o}$	5	5
$p_{4}-\bar{o}$	3	7
$p_{5}-\bar{o}$	2	18

... 01

 graphically

 graphically
 $\overline{2(p-\bar{o})(o-\bar{o})}$
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Probability</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">forecasts not</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">followed by rain</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Probability |
| :---: |
| forecasts not |
| followed by rain |</table-markdown></div>

II.2.4 Alan Murphy's decomposition

Brier Score decomposition

$$
B S=\frac{1}{N} \sum_{k=0}^{M} N_{k}\left(f_{k}-\bar{o}_{k}\right)^{2}-\frac{1}{N} \sum_{k=0}^{M} N_{k}\left(\bar{o}_{k}-\bar{o}\right)^{2}+\bar{o}(1-\bar{o})
$$

The first term is a reliability measure:

For perfectly reliable forecasts, the subsample relative frequency is exactly equal to the forecast probability in each sub-sample.

$$
B S=\frac{1}{N} \sum_{k=0}^{M} N_{k}\left(f_{k}-\bar{o}_{k}\right)^{2}-\frac{1}{N} \sum_{k=0}^{M} N_{k}\left(\bar{o}_{k}-\bar{o}\right)^{2}+\bar{o}(1-\bar{o})
$$

The second term is a resolution measure:

$$
B S=\frac{1}{N} \sum_{k=0}^{M} N_{k}\left(f_{k}-\bar{o}_{k}\right)^{2}-\frac{1}{N} \sum_{k=0}^{M} N_{k}\left(\bar{o}_{k}-\bar{o}\right)^{2}+\bar{o}(1-\bar{o})
$$

The uncertainty term ranges from 0 to 0.25. If the event either always occurs or never occurs, then there is high certainty. With a 50-50 probability it is most uncertain

$\bar{o}=0.3$ yields less "uncertainty" (0.21) than $\bar{o}=0.5(0.25)$
Compare with a sack of balls with two colours with proportions \bar{o} and $1-\bar{o}$ where "certainty" $=\bar{o}^{2}+(1-\bar{o})^{2}$

II.2.5 Pitfalls with the Brier Score

The BS will appear to improve if the sharpness gets worse.
A contest between a real and fake doctor trying to forecast the sex of not yet born children.

The fake doctor will score BS = 0.5 just by guessing.

If the real doctor is 65% correct in his forecasts he will score BS = 0.35.

By saying "fifty-fifty" in 60\% of the cases the fake doctor can "improve" his score to exactly the same $\mathrm{BS}=0.35$.
$B S=1$ in 50% and
$B S=0$ in 50%
$B S=1$ in 35% and $B S=0$ in 65%
$B S=1$ in 20\%
BS = 0 in 20\%
$B S=0.25$ in 60%
$0.2+0.15=0.35$

The guessing hoaxer's reliability diagram. Brier score $=\mathbf{0 . 5 0}$

The rather skilful (60% hit rate) scientist's reliability diagram. Brier score $=\mathbf{0 . 3 5}$

The hoaxer's "improved" reliability diagram. He is still guessing but the Brier score has decreased to $\mathbf{0 . 3 5}$ since he increased a "useless" reliability

I.2.6 Extensions of the Brier Score

Brier skill score

A new "Brier Skill Score" with climate as reference would be

$$
B S S_{n e w}=\frac{\overline{(p-\bar{o})(o-\bar{o})}}{\overline{(o-\bar{o})^{2}}}
$$

In analogy with the Anomaly Correlation Coefficient

$$
A C C=\frac{\overline{(f-c)(a-c)}}{\overline{(a-c)^{2}}}
$$

Instead the following definition has been agreed

Brier skill score

$B S S=\left(B S_{\text {ref }}-B S\right) / B S_{\text {ref }}$

Rank probability score (RPS)

It is just the Brier score
 $$
B S=\overline{(p-o)^{2}}
$$

applied for different thresholds, defining new probabilities, and then integrating or summing up

END

