II. Frequentist probabilities

II.3 Forecast system validation

2015-03-24

Probability Course II:3 Bologna 9-13 February 2015

1

II.3.1 The "strictly proper" Brier Score

Contribution BS₁ of <u>one</u> forecast to the total Brier Score

The Brier Score will "punish" you if you, a <u>reliable probability forecaster</u>, put a probability you do not really believe in.

- 1. You believe the probability is 50% but think people will misunderstand and therefore put 40% or 60%
- 2. You believe the probability for very severe weather is40% but in order to make people stay at home you issuea 80% warning
- 3. You believe (wrongly) that it is tactical to nudge towards the climatological probability

-How does the "proper" Brier score (BS) "know" my true opinion?

The forecaster honestly ♥ believes in a 50% probability

Bologna 9-15 February 2015

Bologna 9-13 February 2015

II.3.2. The <u>Relative</u> <u>Operations</u> <u>Characteristics</u>

The <u>**R**</u>elative <u>**O**</u>perating <u>**C**</u>haracteristic curve</u>

- 1. Is able to compares the skill of deterministic and probabilistic forecasts
- 2. For any probability threshold yes/no deterministic forecasts can be obtained
- 3. For each threshold the proportions of "hits" and "false alarms" define the x- and y-axis coordinates

	Event occurs	Even does
		not occur
Warning	Hit (H)	False alarm
No warning	Missed	Correct
	event (M)	negative (N)

Hit rate (HR) = H/(H+M)

False alarm rate (FAR) = F/(F+N) <u>not</u> F/(F+H)

<u>**R**</u>elative <u>**O**</u>perating <u>**C**</u>haracteristic (ROC) diagram

$\underline{\mathbf{R}}$ elative $\underline{\mathbf{O}}$ perating $\underline{\mathbf{C}}$ haracteristic (ROC) diagram

Some draw backs with ROC diagrams

- •They do not expose biases/mean errors
- •They do not reflect over- or under-confidence
- •They are independent of calibration
- •They reflect potential skill, like the ACC

II.3.3 The Talagrand diagram

With only one ensemble member (|) all (100%) observations (•) will fall "outside

With only one ensemble member (|) all (100%) observations (•) will fall "outside

With two ensemble members, two out of three observations (2/3=67%) will fall outside

With only one ensemble member (|) all (100%) observations (•) will fall "outside

With two ensemble members, two out of three observations (2/3=67%) will fall outside

With three ensemble members two out of four observations (2/4=50%) will fall outside • | • | • | •

With only one ensemble member (|) all (100%) observations (•) will fall "outside

With two ensemble members two out of three observations (2/3=67%) will fall outside

With three ensemble members two out of four observations (2/4=50%) will fall outside

Two observations out of N will always fall outside yielding a proportion of 2/N outside

Outsiders

If the observation error is taken into account, the observation is more likely to occupy a bin away from the norm than closer

But the observation error is not necessarily symmetric....

Probability Course II:3 Bologna 9-13 February 2015

And if the observation error is not symmetric, this might partly compensate....

The Talagrand diagrams works better for fewer number of members

This avoids that the width of an interval is smaller than the average observation error!

END