II. Frequentist probabilities

II. 3 Forecast system validation

II.3.1 The "strictly proper" Brier Score

Contribution BS_{1} of one forecast to the total Brier Score

The Brier Score will "punish" you if you, a reliable probability forecaster, put a probability you do not really believe in.

1. You believe the probability is 50% but think people will misunderstand and therefore put 40% or 60%
2. You believe the probability for very severe weather is 40% but in order to make people stay at home you issue a 80% warning
3. You believe (wrongly) that it is tactical to nudge towards the climatological probability

-How does the "proper" Brier score (BS) "know" my true opinion?

The forecaster honestly believes in a 50\% probability

II.3.2. The $\underline{\text { Relative } \underline{O} p e r a t i o n s ~} \underline{\text { Characteristics }}$

The $\underline{\text { Relative }} \underline{\mathbf{O} p e r a t i n g ~} \underline{\text { Characteristic curve }}$

1. Is able to compares the skill of deterministic and probabilistic forecasts
2. For any probability threshold yes/no deterministic forecasts can be obtained
3. For each threshold the proportions of "hits" and "false alarms" define the x - and y-axis coordinates

	Event occurs	Even does not occur
Warning	Hit (H)	False alarm (\mathbf{F})
No warning	Missed event (M)	Correct negative (N)

Hit rate $(\mathbf{H R})=\mathbf{H} /(\mathbf{H}+\mathbf{M})$
False alarm rate $(\mathbf{F A R})=\mathbf{F} /(\mathbf{F}+\mathbf{N})_{n o t}^{\mathrm{F}} /(\mathrm{F}+\mathrm{H})$

\underline{R} elative $\underline{\text { Operating }} \mathbf{\text { Characteristic (ROC) diagram }}$

Only hits, no false alarms

Never any warnings

\longrightarrow false alarm rate

Event never takes place

$\underline{\text { Relative }} \underline{\text { Operating }} \underline{\text { Characteristic (}}$ (ROC) diagram

Only hits, no false alarms

Never any warnings

Event never takes place

\longrightarrow false alarm rate

Some draw backs with ROC diagrams

-They do not expose biases/mean errors
-They do not reflect over- or under-confidence
-They are independent of calibration
-They reflect potential skill, like the ACC

II.3.3 The Talagrand diagram

The principle of the Talagrand diagram

With only one ensemble member (\|) all ($\mathbf{1 0 0 \%}$) observations (\bullet) will fall "outside

The principle of the Talagrand diagram

With only one ensemble member (|) all ($\mathbf{1 0 0 \%}$) observations (\bullet) will fall "outside With two ensemble members, two out of three observations ($\mathbf{2} / 3=67 \%$) will fall outside

$1 \cdot 1 \cdot$

The principle of the Talagrand diagram

With only one ensemble member (|) all ($\mathbf{1 0 0 \%}$) observations (\bullet) will fall "outside With two ensemble members, two out of three observations ($2 / 3=67 \%$) will fall outside
 With three ensemble members two out of four observations ($\mathbf{2 / 4 = 5 0 \%}$) will fall
 outside

The principle of the Talagrand diagram

With only one ensemble member (|) all ($\mathbf{1 0 0 \%}$) observations (\bullet) will fall "outside With two ensemble members two out of three observations ($2 / 3=67 \%$) will fall outside
 With three ensemble members two out of four observations ($\mathbf{2 / 4}=\mathbf{5 0 \%}$) will fall outside

Two observations out of \mathbf{N} will always fall outside yielding a proportion of $2 / \mathrm{N}$ outside

T(850) anomaly [K] 19991201-20000229 STEP 144

If the observation error is taken into account, the observation is more likely to occupy a bin away from the norm than closer

But the observation error is not necessarily symmetric....

If an observation

 is wrong, it is most likely to be towards the normal

Less likely
The observation error is not symmetric

And if the observation error is not symmetric, this might partly compensate....

T(850) anomaly [K] 19991201-20000229 STEP 144

The Talagrand diagrams works better for fewer number of members

This avoids that the width of an interval is smaller than the average observation error!

END

