

Ensemble spring flood forecasting in Sweden: ECMWF vs. climatology

Jonas Olsson, Peter Berg, Johan Södling, Gitte Berglöv, Henrik Spångmyr och Jörgen Rosberg

> **Research & Development (hydrology) Swedish Meteorological and Hydrological Institute**

Acknowledgements

Energiforsk

2

The challenge

 To predict the accumulated spring flood volume (SFV; see figure below) in two Swedish rivers (Vindelälven and Ljusnan) on 1/1, 1/3 and 1/5

The engine

SMHI

The HBV model, well calibrated for each river

Tabell 1 Egenskaper för de stationer som använts i studien.

Äl∨	Station	Area	Medel-Q _{VF}	H	BV
		(KIII-)	(117/5)	R²	RVE
Vindelälven	Sorsele	6054	289	0.89	3.2
	Vindeln*	11846	400	0.91	1.5
Ljusnan	Svegsjön	8484	209	0.87	-0.6
	Dönje*	14743	291	0.85	0.5

*Utlopp

1. Run the HBV model forced with observations during a spin-up period up to the forecast issue date \rightarrow initialised model

- 1. Run the HBV model forced with observations during a spin-up period up to forecast issue date \rightarrow initialised model
- 2. Use an ensemble of daily precipitation (P) and temperature (T) time series to drive the HBV model from the forecast issue date up until the end of the spring flood period \rightarrow ensemble of discharge time series

- 1. Run the HBV model forced with observations during a spin-up period up to forecast issue date \rightarrow initialised model
- 2. Use an ensemble of daily precipitation (P) and temperature (T) time series to drive the HBV model from the forecast issue date up until the end of the spring flood period \rightarrow ensemble of discharge time series
- 3. Accumulate the discharge in the spring flood period (\rightarrow SFV), calculate percentiles

- 1. Run the HBV model forced with observations during a spin-up period up to forecast issue date \rightarrow initialised model
- 2. Use an ensemble of daily precipitation (P) and temperature (T) time series to drive the HBV model from the forecast issue date up until the end of the spring flood period \rightarrow ensemble of discharge time series
- 3. Accumulate the discharge in the spring flood period (→volume), calculate percentiles

The competing drivers in step 2 (1981-2010)

- Climatology (IHMS): P and T during the forecast period from all historical years
- ECMWF: P and T from seasonal forecasts (System 4)

ECMWF T bias (°C) - original (ORG)

• Comparison with local observations in period 1981-2010

			Jan	Feb	Mar	Apr	Мај	Jun	Jul
Vindelälven	1/1	ORG	-0.6	-0.3	-1.1	-1.6	-1.7	-1.2	-1.0
	1/3	ORG			-1.1	-1.5	-1.8	-1.4	-1.0
	1/5	ORG					-0.7	-0.3	-0.6
Ljusnan	1/1	ORG	-1.2	-0.5	-1.3	-1.5	-0.9	-0.1	-1.0
	1/3	ORG			-1.3	-1.4	-1.1	-0.2	-0.9
	1/5	ORG					0.1	0.5	-0.5

ECMWF P bias (%) - original (ORG)

• Comparison with local observations in period 1981-2010

			Jan	Feb	Mar	Apr	Maj	Jun	Jul
Vindelälven	1/1	ORG	-6.9	10.3	7.7	29.5	15.9	7.3	-3.8
	1/3	ORG			1.5	32.7	20.8	7.2	-1.9
	1/5	ORG					31.8	18.2	0.6
Ljusnan 1/1	1/1	ORG	4.5	10.8	8.4	4.4	13.9	1.8	4.4
	1/3	ORG			8.0	13.5	19.0	-0.8	5.7
	1/5	ORG					34.0	8.7	5.3

Distribution-Based Scaling (DBS)

- Bias correction of daily time series by distribution mapping using a Gamma (double) distribution for precipitation and a Gaussian for temperature
- Trained on hindcasts 1981-2010, applied to the same period
- Each calendar month corrected separately

Yang, W., Andréasson, J., Graham, L.P., Olsson, J., Rosberg, J., and F. Wetterhall (2010) Distribution-based scaling to improve₁₁ usability of regional climate model projections for hydrological climate change impact studies, Hydrol. Res., 41, 211-229.

ECMWF T bias (°C) - corrected (DBS/COR) SMH

• Comparison with local observations in period 1981-2010

			Jan	Feb	Mar	Apr	Мај	Jun	Jul
Vindelälven	1/1	ORG	-0.6	-0.3	-1.1	-1.6	-1.7	-1.2	-1.0
		DBS	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1/3	ORG			-1.1	-1.5	-1.8	-1.4	-1.0
		DBS			0.0	0.0	0.0	0.0	0.0
	1/5	ORG					-0.7	-0.3	-0.6
		DBS					0.0	0.0	0.0
Ljusnan	1/1	ORG	-1.2	-0.5	-1.3	-1.5	-0.9	-0.1	-1.0
		DBS	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1/3	ORG			-1.3	-1.4	-1.1	-0.2	-0.9
		DBS			0.0	0.0	0.0	0.0	0.0
	1/5	ORG					0.1	0.5	-0.5
		DBS					0.0	0.0	0.0

ECMWF P bias (%) - corrected (DBS/COR) SMHI

			Jan	Feb	Mar	Apr	Maj	Jun	Jul
Vindelälven	1/1	ORG	-6.9	10.3	7.7	29.5	15.9	7.3	-3.8
		DBS	0.7	3.1	2.1	7.2	6.0	1.3	0.7
	1/3	ORG			1.5	32.7	20.8	7.2	-1.9
		DBS			1.6	6.7	5.8	1.2	0.8
	1/5	ORG					31.8	18.2	0.6
		DBS					5.8	0.9	0.7
Ljusnan	1/1	ORG	4.5	10.8	8.4	4.4	13.9	1.8	4.4
		DBS	0.9	4.2	2.7	10.2	4.3	0.8	0.8
	1/3	ORG			8.0	13.5	19.0	-0.8	5.7
		DBS			2.7	10.5	4.3	0.9	0.8
	1/5	ORG					34.0	8.7	5.3
		DBS					4.4	0.7	0.7

Results: SFV bias (%)

		Vindelälven				
		Sorsele	Vindeln			
1/1	IHMS	-6.7	-5.8			
	ECorg	3.6	8.1			
	ECDBS	2.8	0.8			
1/3	IHMS	-3.9	-3.2			
	ECorg	2.3	6.6			
	ECDBS	1.0	-0.3			
1/5	IHMS	-4.1	-4.5			
	ECorg	2.8	3.6			
	ECDBS	0.3	0.1			

Results: Mean Absolute Error in SFV

Ensemble evaluation

Q-ensemblespridning

d Vindeln 1/3

SMHI

The "peak day"

Besides a fixed 3-month window we used a moving 1-month window to define maximum total volume and the "peak day"

Peak day forecasts in Vindeln

So, how about that other river?

SFV bias	SFV bias		snan
		Svegsjön	Dönje
1/1	IHMS	-5.3	-2.2
	EC _{org}	30.0	24.0
	EC _{dbs}	16.0	9.1
1/3	IHMS	-3.7	-7.8
	EC _{org}	22.2	-20.6
	EC _{dbs}	12.1	-4.0
1/5	IHMS	-2.9	-4.8
	EC _{org}	32.0	-22.8
	EC _{dbs}	8.5	-5.1

SFV MA	=	Ljusnan			
		Svegsjön	Dönje		
1/1	IHMS	15.0	20.7		
	EC _{org}	33.0	31.2		
	EC _{dbs}	22.9	25.3		
1/3	IHMS	15.5	16.1		
	EC _{org}	25.9	22.0		
	EC _{dbs}	20.4	14.3		
1/5	IHMS	19.8	10.9		
	EC _{org}	35.6	22.8		
	EC _{dbs}	23.5	10.6		

Why no improvement in Ljusnan?

- Less accurate P bias-correction?
- Complex regulation?
- Mixture of rain and snow?

Conclusion: a draw

No one gets the belt but the fight must continue...

Thanks for your attention!

jonas.olsson@smhi.se