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Seasonal streamflow forecasting service in
Australia
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Seasonal streamflow forecasting service in
Australia

Figure 1. Comparison of the Bureau’s seasonal streamflow forecast
and ACTEW Water storage projections
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Two sources of predictability

e State of the catchment
* Glacier, snow, soil moisture, groundwater, in-stream storages, ...

e State of the climate
 Atmosphere, ocean, land




Challenges

* High quality forecasts - Skill and reliability

* Meeting user needs




The Bayesian joint probability (BJP) method

* Predictors — Predictands

* |ssues

* Heteroscedasticity
e Zero value
* Data

e The BJP solution

* Transformations
* Censored data
* A joint probability model, with Bayesian inference

Wang, Robertson and Chiew (2009) Water Resources Research
Wang and Robertson (2011) Water Resources Research

Wang, Shrestha, Robertson and Pokhrel (2012) Water Resources Research

Robertson and Wang (2013) Woater Resources Management
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Probabilistic forecasts

Normalised frequency

Generated: 22:03 D4/08/2015 (ver. 1.8.4/1 1.6}

Unregulated inflow to Hume Dam
Forecast period: Sep-Nov 2015

Forecast
storical
B Reference (1970+)

Hindcast RMSEP = 39
(High skill)

Percentage of forecast in each tercile

1000 2000 3000 4000 5001
Streamflow (GL)

@Commonwealth of Australia 2015, Australian Bureau of Meteorology

Unregulated inflow to Hume Dam

Forecast period: Sep-Nov 2015

Terciles applied to
forecast distribution

Hindcast RMSEP = 39
(High skill)

0 1000 2000 3000 4000 5000

Terciles from historical data

Generated: 22:03 04/00/2015 (ver 184/1.1.6)

0 1000 2000 3000 4000 5000
Streamflow (GL)

@Commonwealth of Australia 2013, Australian Bureau of Meteorslogy

Unregulated inflow to Hume Dam

Forecast period: Sep-Nov 2015

o Forecast |
|
Reference (1370+)
Hindcast RMSEP = 39
4000 (High skill)
)
O 3000
=
]
=
E
I
e
5 2000
]
1000
o
E) 40 B 100

Generated: 22.03 D4/08/2015 (ver. 1.8.4/1.1.6}

&0
Exceedance probability (%)

@Commenwealth of Australia 2015, Australian Bureau of Meteorology

Unregulated inflow to Hume Dam
Forecast period: Sep-Nov 2015

Historical data (Accumulating monthly)

Forecast distribution

000 [ Tastyear 2010 Forecast .
10 yr average (2005+] Historical
& Average (1950+) Reference (1970+)
®-® Maximum (1974)
#—# Minimum (2006) Hindcast RMSEP = 39
24000 (High skill)- 4000
=5 jry
Q 000 3000 O
= H
S S
= =
£ E
5 8
£ 2000 Hz000 5
] ]
1000 \\ 41000
" ——
=
> =
— ——————
o = e 0
3l-Aug 0-Sep 31-Oct 30-Now

Date

Generated: 22:03 D4/00/2015 (ver 1 &.4/1 16)

Normalised frequency

©Commonwealth of Australia 2015, Australian Bureau of Meteorology

44  72.264
45  73.979
46  74.132
47  74.507
48  75.136
49  76.356
50 77.234
51 77.937
52 77.952
53  78.276
54  78.721
55  80.045
56 81.461
57  81.537
58  82.374
59  82.676
60  82.754
61  84.262
62  85.438
63 86.43
64  86.505
65  87.163
66  89.975
67  90.277

O O O o o

0.177
2.643
3.011
6.152
6.986
7.312
9.099
12.313
13.697
14.536
16.977
17.938
18.258
19.29
21.252
22.814
24.639
24.976
25.415




PIT

Cross validation

Forecast quantiles and observations versus year
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Key learnings

* Forecasts highly reliable
 Skill varying with locations and seasons

e Other applications




Model selection and combination

 Many candidate predictors

* State of climate
SOI, NINO3, NINO3.4, NINO4, ENSO Modoki; 10D, IOE, IOW, II;
TSI, SAM

e State of catchment
Antecedent streamflow; Antecedent rainfall

* The best model approach
 The model combination approach (BMA)

Robertson and Wang (2012) Journal of Hydrometeorology
Wang, Schepen and Robertson (2012) Journal of Climate
Pokhrel, Wang and Robertson (2013) Water Resources Research

Bennett, Wang, Pokhrel and Robertson (2014) Natural Hazards and Earth System Sciences
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Key learnings

* Two or fewer predictors in each BJP model

* Selecting the best model based on predictive ability - a
good idea

 Model combination - preferred
* Taking advantage of strengths of different models
* Moderating worst forecast errors

e Other applications




Incorporating dynamical model outputs

* |ssues

* Antecedent streamflow or rainfall —> Not always good indicators
* Do climate model outputs add value?

* Incorporating dynamical model outputs to the BJP
model

e Hydrological model
e Climate model

Robertson, Pokhrel and Wang (2013) Hydrology and Earth System Sciences

Pokhrel, Wang and Robertson (2013) Water Resources Research
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Skill gain

CRPS skill scores
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Key learnings

* Incorporating hydrological model outputs

Forecast improvement when catchment is
* wetting up

* Drying down

* near saturation

* Incorporating climate model outputs

* Marginal skill increase when using precipitation forecasts
* No additional benefit when using forecast SST

* Hydrological model + BJP = Practical option
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What about fully dynamical models?

* Advantages

* Conceptually more attractive
* Ensemble time series forecasts useful for practical applications

* Disadvantages

* Modelling more complex
* Uncertainty handling much challenging

e Overall
* The way to go

Page 15 %



Merging statistical and dynamical forecasts

* The Bureau of Meteorology service

e Currently the BJP is used for operational forecasting
* The Bureau has also developed a dynamic model (DM)

* The two models offer complementary skill




Complementary skill
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Merging statistical and dynamical forecasts

* The Bureau of Meteorology service

e Currently the BJP is used for operational forecasting

* The Bureau has also developed a dynamic model (DM)
* The two models offer complementary skill

* Future service will adopt merged forecasts

e Bayesian model averaging (BMA)

* Generally works well
* On rare occasions, merged forecasts too wide and even bi-modal

* Quantile model averaging (QMA)

Wang, Schepen and Robertson (2012) Journal of Climate

Schepen and Wang (2015) Woater Resources Research
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Two examples

BJP
DM
BMA
QMA
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Key learnings

* QMA merged forecasts are preferable

* Merging brings out the best skill




Merging brings out the best skill

Skill score (%) of QMA forecasts
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Improving climate forecasts

* Available forecasts are generally of low skill and
unreliable

 BJP + BMA: A versatile duo!
e CBaM (calibration, bridging and merging)

Schepen, Wang and Robertson (2011) Journal of Climate

Wang, Schepen and Robertson (2012) Journal of Climate

Schepen, Wang and Robertson (2012) Journal of Geophysical Research

Schepen and Wang (2013) Monthly Weather Review

Hawthorn, Wang, Schepen and Robertson (2013) Water Resources Research
Schepen and Wang (2014) Journal of Hydrology

Schepen, Wang and Robertson (2014) Monthly Weather Review

Peng, Wang, Schepen, Pappenberger et al. (2014) Journal of Geophysical Research
Peng, Wang, Bennett, Pokhrel and Wang (2014) Journal of Hydrology
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Meeting user needs — Key learnings

* Engage early
* Engage continuingly

* Respond to feedback

e Case studies




The FoGSS model

* For generating FOrecast Guided Stochastic Scenarios

* Ensemble forecasts of monthly volumes of streamflow
out to 12 months

* The forecasts become more like natural stochastic
scenarios as skill decreases with lead time

Page 24 %



Generating a forecast

e CBaM —> Climate forecasts
 WAPABA —> Streamflow forecasts
 ERRIS —> Revised streamflow forecasts

* Conditional bias correction

* Updating, injecting and propagating hydrological uncertainty to next lead time

Wang, Pagano, Zhou, Hapuarachchi, Zhang and Robertson (2011) Journal of Hydrology
Wang, Shrestha, Robertson and Pokhrel (2012) Water Resources Research

Li, Wang and Bennett (2013) Water Resources Research

Pokhrel, Robertson and Wang (2013) Hydrology and Earth System Sciences

Li, Wang, Bennett and Robertson (2015) Hydrology and Earth System Sciences

Li, Wang, Bennett and Robertson (submitted) Water Resources Research
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Generating a forecast

e CBaM —> Climate forecasts
 WAPABA —> Streamflow forecasts
 ERRIS —> Revised streamflow forecasts

* Conditional bias correction

* Updating, injecting and propagating hydrological uncertainty to next lead time

Wang, Pagano, Zhou, Hapuarachchi, Zhang and Robertson (2011) Journal of Hydrology
Wang, Shrestha, Robertson and Pokhrel (2012) Water Resources Research

Li, Wang and Bennett (2013) Water Resources Research

Pokhrel, Robertson and Wang (2013) Hydrology and Earth System Sciences

Li, Wang, Bennett and Robertson (2015) Hydrology and Earth System Sciences

Li, Wang, Bennett and Robertson (submitted) Water Resources Research
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Example forecasts
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Key learnings

e Maximizing skill
e Extracting the most out of climate model outputs

* Hydrological modelling: Hydrological model, conditional bias correction,
updating




Key learnings

* Maximizing skill
e Extracting the most out of climate model outputs

* Hydrological modelling: Hydrological model, conditional bias correction,
updating

* Achieving reliability




Reliability - monthly
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Reliability - cumulative

Probability integral transform
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Key learnings

* Maximizing skill
e Extracting the most out of climate model outputs

* Hydrological modelling: Hydrological model, conditional bias correction,
updating

* Achieving reliability
* Reliable climate forecasts
* Hydrological uncertainty handling
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Key learnings

* Maximizing skill
e Extracting the most out of climate model outputs
* Hydrological modelling: Hydrological model, conditional bias correction,

updating
* Achieving reliability
e Reliable climate forecasts
* Hydrological uncertainty handling

* FoGSS for water management

* Forecast guided stochastic scenarios of monthly streamflow out to 12
months

* Monthly volume skilful only at short lead times
e Cumulative volume skilful to longer lead times
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Current and future work

* New BJP

* New CBaM

* FoGSS adoption

* Flood and short-term forecasts
* Seamless forecasts

 Ensemble climate surfaces (ESDIIM)
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