Seasonal predictability of daily rainfall for catchment hydrology in NW South America Using an NHMM model

Luis PINEDA and P. WILLEMS Department of Civil Engineering Hydraulic Section

HEPEX Seasonal Hydrological Forecasting Workshop 22nd September 2015, Norrköping, Sweden

Motivation

Water Management related problems

PERU-Piura

EN 97-98

<text><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

EN 02-03 "Litigation because the absence of EN. Farmers will sue those who predicted rains"

Photo 1: Flooding close to Guayaquil (province Guayas) on 10 March 2008 (Photo: J. Bendix)

LN 07

ECUADOR-Guayas

Introduction

The regional climate

The Pacific-Andean Basin in Ecuador and Peru

- 21 hydrological units c.a.100,800 km2
- ~70 % Ecuadorian crop production

User needs of S2S forecast

Hydro-meteo hazards

- Slope stability
- Landslide models

Water resources

- Inflow for reservoirs
 - Flood / drought a Costa

Objectives

- Provide theoretical basis for seasonal climate prediction
- Tailor GCM seasonal climate forecasts for hydrological applications

Introduction

Work flow

Why NHMM for downscaling?

 $P\left(S_{t}|S_{1:t-1},\mathbf{X}_{1:T}\right) = P\left(S_{t}|S_{t-1},\mathbf{X}_{t}\right)$

Robertson et al. 2004

- Describes spatio-temporal dependencies in multi-site / catchment rainfall data
- The hidden weather states allow "upscaling" of rainfall processes
- Input variable X1:T can play the role of predictor on the spatial scale of the weather state

Robertson, A. W., S. Kirshner, and P. J. Smyth, 2004: Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. J. Climate, 17, 4407-4424. ⁷

1. Dec-May weather characterization

- Number states
- Emission distributions for daily intensities and occurrences (pdf's)

 \rightarrow ML parameter estimation EM¹ algorithm

Weather diagnosis

- States evolution sequence (Viterbi algorithm ²)
- Clustering of days falling into each state
- Mapping states as atmospheric composites:

uv850, q 850 anomalies from the Dec-May climatology

¹ Dempster et al. 1977; Ghanhramani, 2001

² Forney Jr., 1978

Dec-May weather characterization

Dec-May weather characterization

Intra-season variability

Interannual variability

Dec-May weather characterization

Weather state - synoptic identity

2. GCM evaluation & Predictors identification

Seasonal GCM forecast evaluation

- CFSv2 skill (-) underestimation "double ITCZ syndrome".
- ECHAM4.5ca skill(+) fails to emulate thermal rainfall as 1^{st} mode $\rightarrow qa(850hPa)$
- ECHAM4.5his skill (++) Separates thermal (signal) and dynamic (noise) $\rightarrow p$ highly skilful

Processes Upscaling - Predictors identification

S1: Wet (+)

Weather-type daily rainfall downscaling using a NHMM

ECHAM4.5his CC

Process-based downscaling (Dec-May)

NHMM vs. CCA (correlation)

- 100 stochastic daily simulation of 36 Dec-May rainfall
- Better skills over SENP: Seas Total (+), Intensity w/d (++), Prob. Occur. (-)

Conclusions

ECHAM4.5 performs better than CFSv2

- → AGCM: SSTs lower boundary forcing is crucial for regional climate prediction
- → Challenge: predict SSTs (east of 105W)
- Extraction of the AGCM process-related signal is key to input the NHMM
 - → Onset (Dec-Jan): dynamic (ITCZ/SAM) > thermal
 - \rightarrow Mature(Feb-Mar) : dynamic =~ Thermal
 - → Retreat (Apr-May): thermal > dynamic (ITCZ)
- GCM-NHMM shows potential to produce daily rainfall info for catchment hydrology

→ Challenge: complex spatial dependences over inner Andean catchments

