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Sources of Streamflow Predictability ., s

hydrological predictability
meteorological predictability

Hydrological Prediction: How
well can we estimate
catchment dynamics?
— Accuracy in precipitation
and temperature estimates

— Fidelity of hydrology
OMENT HEATING models — process/structure

OF ATMOSPHERE)
— Effectiveness of hydrologic
data assimilation methods

CLOUDS &
= WATERVAPOR

BOUNDARY LAYER
(AND EXCHANGE

WITH FREE ATMOSPHERE) Atmospheric predictability:

How well can we forecast the
weather and climate?

Opportunities: How do these
areas influence forecast skill
inform different water
applications?

Water Cycle (from NASA)
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Watershed Modeling Dataset

* Goal: framework for calibrating and running watershed models CONUS-wide

* Basin Selection
— Used GAGES-II, Hydro-climatic data network (HCDN)-2009

* |Initial Data & Models, Calibration Approach
— Forcing via Daymet (http://daymet.ornl.gov/)

— NWS operational Snow-17 and Sacramento-soil moisture accounting model (Snow-17/SAC)
— Shuffled complex evolution (SCE) global optimization routine
— See http://www.ral.ucar.edu/staff/wood/watersheds/

NSE
Calibration

Andy Newman
762 Watersheds
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Hydro-climatic/Seasonal Variation in Watershed Moisture NcAr
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RAL/HAP

* Focused on 424 of Sac/Snow17 models for 424 of the Newman et al 762 basins
e Contrasting two today — (1) humid Eastern US basin...
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RAL/HAP

* Focused on 424 of Sac/Snow17 models for 424 of the Newman et al 762 basins

e Contrasting two today — (2) snowy Western US basin...
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Assessing the sources of flow forecast skill - F=4%

RAL/HAP

vary predictor uncertainty 2> measure streamflow forecast uncertainty

a. ESP c. Climatology
perfect f;trospecwe ensembie of me: data continuUOUS retrospecitiva simulations
mat gwggmam to gen:::: ae:'lstsemtma — &=
—=__ = = Spin-up ICs Forecast
Spin-up ICs Forecast ~

—
obs
yr

hydrologic
state

ESP (NWS ensemble streamflow prediction) compared with climatology:

- shows influence of uncertainty in seasonal climate forecasts (SCFs)
on streamflow forecast uncertainty



Assessing the sources of flow forecast skill

vary predictor uncertainty 2> measure streamflow forecast uncertainty

b. “Reverse-ESP" forecast

ICs

ensembie of met cata parect retrospectve
10 generate ensemble met torecast
of IHCs
v —— ;

Forecast

Reverse-ESP:

- shows influence of

a. ESP c. Climatology
perfect retrospecave ensembie of me: data CoNUNUOUS retrospectiva simulations
met data to generate to generate ensembie
a pertect INC forecast T
—=_ = = Spin-up ICs  Forecast
Spin-up ICs  Forecast
—
hydrologic : ? g
state
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uncertainty in initial hydrologic
conditions (IHCs) on streamflow
forecast uncertainty

Wood & Lettenmaier, GRL 2008
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Assessing the sources of flow forecast skill

vary predictor uncertainty 2> measure streamflow forecast uncertainty

a. ESP
pertect retrospecuve ensembie of me: data .
mat data to generate to generate ensembie lVES PA’ .
_w 3’?’; - explores influence of
Spin-up  ICs  Forecast variations in SCF and IHC
uncertainty on streamflow
S—— ) forecast uncertainty
hydrologic ;:’ ’
state

d. VESPA forecast

b. "Reverse-ESP forecast scalod ensembio scalod onsomblo
ensemble of met data pertect retrospective b loc::)c":lo;ls
to generale ensemole met torecast : 7 . g
of MG T e 2
e < Spin-up  ICs  Forecast

ICs  Forecast

Wood et al (JHM 2015, in review)
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Implementation details i P

ESP & ‘reverse ESP’ are end-points — what about realistic/intermediate uncertainties?
— Define weight w = fraction between 0 and 1.
*  w=0 means no uncertainty and w=1 means climatological uncertainty
— Modify IHC vector (soil moistures, snow) for each ens. year in climatological period
* |Cmod = ICactual_yr *(1-w) + ICens_yr*w
— Modify SCF met. forcings (precip, temperature) for each year in forecast ensemble
* SCFmod = SCFactual_yr*(1-w) + SCFens_yr*w
* weights applied at monthly timestep; actual year daily meteorology scaled to result
— Results in all IHC states initialize all met ensemble members (eg, 30 x 30)
— Assess against model simulations as ‘obs’ — an idealized ‘perfect model’ experiment
— Note: w,,.=0and w,, =1 not exactly equal to ESP
o~ T~
Spin-up ICs Forecast

shows
effects of
climate
forecast
uncertainty RMSE
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Moving beyond the end points RAL/HAP

Weights explored:

— Scale IC and Met Forecast variance (uncertainty) between
e 0= perfect knowledge & 1 = climatological uncertainty

— Assess flow forecast skill for range of combinations of IHC and SCF weighting:
« w=0.00,0.05,0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1.00 (9 weights)

— Given w, the resulting variance explained in IHCs or SCFs (monthly) is ~:
e (1-w?)*100 = 100, 99.8, 99, 94, 75, 44, 19, 10, 0
* (in retrospect, the weights could have been better chosen to span this range)

shows
effects of
climate
forecast
uncertainty

Note: 424 basins * 12 start dates * 81 weight combinations * 30 IHCs * 30 met. traces = 370M simulations
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Visualizing predictability RAL/HAP

Demo of predictability influences for one location

http://www.ral.ucar.edu/staff/wood/weights/
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Seasonal Variation in Watershed Moisture
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humid basin

uniform rainfall

No snow

small cycle driven by ET

cold basin

drier summers

deep snow

large seasonal cycle
April snowmelt
dominates May-June
runoff



Snow-Driven Basin in the

Western US

 \Wide seasonal variations
in influence of different skill
sources

« cold forecast period (Dec-
Feb) -- forecast skill
depends mainly on initial
condition accuracy

« warmer snowmelt forecast
period forecast skill
depends strongly on met.
forecast skill
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>Kill of Mean 1mo Runoft Forecast
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Humid Basin in the

Eastern US

 Few seasonal variations in
streamflow skill
dependence

» Forecast skill (3 months) is
always a blend of IHC and
SCF influence
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VESPA gradients allow calculation of skill elasticities g4, ap

« Elasticity of flow forecast
skill elasticity = local
derivative of flow skill with —
respect to IHC skill

July 1 initialization
1-month runoff forecast

d(flow skill) / d(SCF skill) ESP point

SCF uncertajnty

 Elasticity of flow forecast
skill elasticity = local
derivative of flow skill with 0.0

respect to IHC skill 0002 0.4 0608 1.0

d(flow skill) / d(IHC skill) IHC uncertainty

We can ask: For a specific flow
forecast in a given location, what is

IHC: initial Hydrologic Conditions the best way to improve the skill?
SCF: Seasonal Climate Forecasts



F ow FO reca St Skl Elasticities for 3—month Streamflow Forecasts
Flow Forecast/SCF Flow Forecast/ IHC

Skill Elasticities

 The % change in flow forecast
skill versus per % change in
predictor source skill

Init Oct 1

* Can help estimate the benefits of
investment to improve forecasts
in each area (IHC, SCF)

* for a predictand of interest
e for atime of interest

Init Jan 1

* Results emphasize that both SCF
skill and IHC skill are important,
depending on the forecast being
made and the location

Init Apr 1

* This work is funded by water
management agencies —
Reclamation and US Army Corps

of Engineers 00 02 04 06 08 10 12 14 16 18 20
unit change skill / unit change skill

Init Jul 1
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summary RAL/HAP

* VESPA approach provides insight into seasonal and hydroclimatic

variations in streamflow forecast skill dependence
» goes beyond earlier ESP/reverse ESP predictability end-point framework
 allows calculation of forecast skill elasticities (a new concept)
» provides a tool for understanding potential benefit of forecast system
improvements

* 424-basin assessment provides regional / seasonal view of forecast
skill variations

 elasticities > 1 for SCF implies benefits of climate forecasts for
hydrology can be more valuable than expected

e Assumes perfect model — model error an area for future exploration

Websites

e http://www.ral.ucar.edu/projects/hap/flowpredict/
* http://www.ral.ucar.edu/staff/wood/weights/
Acknowledge:

 US Army Corps of Engineers

e US Bureau of Reclamation
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