Estimating seasonal streamflow forecast elasticities using a variational ensemble streamflow predictability assessment (VESPA)

Andy Wood

Tom Hopson, Andy Newman, Martyn Clark NCAR Research Applications Laboratory, Boulder, CO

Levi Brekke

US Bureau of Reclamation Technical Services Center, Denver, CO

Jeff Arnold

US Army Corps of Engineers Institute for Water Resources, Alexandria, VA

HEPEX Workshop on Seasonal Hydrometeorological Forecasting September 22-24, 2015 – SMHI, Norkopping, Sweden

Sources of Streamflow Predictability

NCAR RAL/HAP

hydrological predictability meteorological predictability

<u>Hydrological Prediction</u>: How well can we estimate catchment dynamics?

- Accuracy in precipitation and temperature estimates
- Fidelity of hydrology models – process/structure
- Effectiveness of hydrologic data assimilation methods

Atmospheric predictability:

How well can we forecast the weather and climate?

<u>Opportunities</u>: How do these areas influence forecast skill inform different water applications?

Watershed Modeling Dataset

- Goal: framework for calibrating and running watershed models CONUS-wide
- Basin Selection
 - Used GAGES-II, Hydro-climatic data network (HCDN)-2009
- Initial Data & Models, Calibration Approach
 - Forcing via Daymet (<u>http://daymet.ornl.gov/</u>)
 - NWS operational Snow-17 and Sacramento-soil moisture accounting model (Snow-17/SAC)
 - Shuffled complex evolution (SCE) global optimization routine
 - See <u>http://www.ral.ucar.edu/staff/wood/watersheds/</u>

NSE Calibration

Andy Newman

NCAR

RAL/HAP

Hydro-climatic/Seasonal Variation in Watershed Moisture NCAR RAL/HAP

- Focused on 424 of Sac/Snow17 models for 424 of the Newman et al 762 basins
- Contrasting two today (1) humid Eastern US basin...

Hydro-climatic/Seasonal Variation in Watershed Moisture NCAR RAL/HAP

- Focused on 424 of Sac/Snow17 models for 424 of the Newman et al 762 basins
- Contrasting two today (2) snowy Western US basin...

Assessing the sources of flow forecast skill

vary predictor uncertainty \rightarrow measure streamflow forecast uncertainty

NCAR

RAL/HAP

ESP (NWS ensemble streamflow prediction) compared with climatology:

- shows influence of uncertainty in **seasonal climate forecasts (SCFs)** on streamflow forecast uncertainty

Assessing the sources of flow forecast skill

vary predictor uncertainty \rightarrow measure streamflow forecast uncertainty

c. Climatology

b. "Reverse-ESP" forecast

Reverse-ESP:

- shows influence of uncertainty in **initial hydrologic conditions (IHCs)** on streamflow forecast uncertainty

Wood & Lettenmaier, GRL 2008

NCAR

RAL/HAP

Assessing the sources of flow forecast skill

vary predictor uncertainty \rightarrow measure streamflow forecast uncertainty

a. ESP perfect retrospective met data to generate a perfect IHC Spin-up ICs Forecast obs yr

b. "Reverse-ESP" forecast

'VESPA':

- explores influence of variations in **SCF and IHC uncertainty** on streamflow forecast uncertainty NCAR

RAL/HAP

d. VESPA forecast

Wood et al (JHM 2015, in review)

Implementation details

ESP & 'reverse ESP' are end-points – what about realistic/intermediate uncertainties?

- Define weight w = fraction between 0 and 1.
 - **w**=0 means no uncertainty and **w**=1 means climatological uncertainty
- Modify IHC vector (soil moistures, snow) for each ens. year in climatological period
 - ICmod = ICactual_yr *(1-w) + ICens_yr*w
- Modify SCF met. forcings (precip, temperature) for each year in forecast ensemble
 - SCFmod = SCFactual_yr*(1-w) + SCFens_yr*w
 - weights applied at monthly timestep; actual year daily meteorology scaled to result
- Results in all IHC states initialize all met ensemble members (eg, 30 x 30)
- Assess against model simulations as 'obs' an idealized 'perfect model' experiment
- Note: $w_{ihc} = 0$ and $w_{scf} = 1$ not exactly equal to ESP

Moving beyond the end points

NCAR RAL/HAP

Weights explored:

- Scale IC and Met Forecast variance (uncertainty) between
 - 0 = perfect knowledge & 1 = climatological uncertainty
- Assess flow forecast skill for range of combinations of IHC and SCF weighting:
 - w = 0.00, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1.00 (9 weights)
- Given w, the resulting variance explained in IHCs or SCFs (monthly) is ~:
 - (1-**w**²)*100 = 100, 99.8, 99, 94, 75, 44, 19, 10, 0
 - (in retrospect, the weights could have been better chosen to span this range)

Note: 424 basins * 12 start dates * 81 weight combinations * 30 IHCs * 30 met. traces = 370M simulations

Visualizing predictability

NCAR RAL/HAP

Demo of predictability influences for one location

http://www.ral.ucar.edu/staff/wood/weights/

Seasonal Variation in Watershed Moisture

- uniform rainfall
- no snow
- small cycle driven by ET

NCAR

RAL/HAP

- cold basin
- drier summers
- deep snow
- large seasonal cycle
- April snowmelt
 dominates May-June
 runoff

Snow-Driven Basin in the Western US

- Wide seasonal variations in influence of different skill sources
- cold forecast period (Dec-Feb) -- forecast skill depends mainly on initial condition accuracy
- warmer snowmelt forecast period forecast skill depends strongly on met. forecast skill

IHC: initial Hydrologic Conditions SCF: Seasonal Climate Forecasts

Snow-Driven Basin in the Western US

- Sensitivities depend on predictand duration
- For 1 month runoff (lead 0), IHCs dominate forecast

IHC: initial Hydrologic Conditions SCF: Seasonal Climate Forecasts

IHC Uncertainty (Fraction of Climo Variance)

Snow-Driven Basin in the Western US

- Sensitivities depend on predictand duration
- For 6 month runoff (lead 0), SCFs have more influence than for shorter predictands

IHC: initial Hydrologic Conditions SCF: Seasonal Climate Forecasts

Humid Basin in the Eastern US

- Few seasonal variations in streamflow skill dependence
- Forecast skill (3 months) is always a blend of IHC and SCF influence

IHC: initial Hydrologic Conditions SCF: Seasonal Climate Forecasts

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 IHC Uncertainty (Fraction of Climo Variance)

VESPA gradients allow calculation of skill elasticities

IHC: initial Hydrologic Conditions SCF: Seasonal Climate Forecasts We can ask: For a specific flow forecast in a given location, what is the best way to improve the skill?

Flow Forecast Skill Elasticities

 The % change in flow forecast skill versus per % change in predictor source skill

- Can help estimate the benefits of investment to improve forecasts in each area (IHC, SCF)
 - for a predictand of interest
 - for a time of interest
- Results emphasize that both SCF skill and IHC skill are important, depending on the forecast being made and the location
- This work is funded by water management agencies – Reclamation and US Army Corps of Engineers

Skill Elasticities for 3–month Streamflow Forecasts
Flow Forecast / SCF
Flow Forecast / IHC

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 unit change skill / unit change skill

Summary

- VESPA approach provides insight into seasonal and hydroclimatic variations in streamflow forecast skill dependence
 - goes beyond earlier ESP/reverse ESP predictability end-point framework
 - allows calculation of forecast skill elasticities (a new concept)
 - provides a tool for understanding potential benefit of forecast system improvements
- 424-basin assessment provides regional / seasonal view of forecast skill variations
- elasticities > 1 for SCF implies benefits of climate forecasts for hydrology can be more valuable than expected
- Assumes perfect model model error an area for future exploration

Websites

- <u>http://www.ral.ucar.edu/projects/hap/flowpredict/</u>
- <u>http://www.ral.ucar.edu/staff/wood/weights/</u>

Acknowledge:

- US Army Corps of Engineers
- US Bureau of Reclamation