A seasonal low-flow forecasting and water management system to support reservoir management

Crochemore, L., Ramos M.-H., Penasso, A., Perrin, C.

HEPEX Seasonal Forecasting Workshop

Arzal reservoir

Reservoir of 50 Mm3 Upstream: 10,000 km² catchment

Uses today

- Flood prevention
- Drinking water
- Boating
- Fish migration

Possible conflicts in summer \Rightarrow Anticipate water quantity issues

- 1. Forecast inflows at the seasonal lead time
- 2. Forecast low-flow variables at the seasonal lead time

3. Model the Arzal reservoir

1. Forecast inflows at the seasonal lead time

2. Forecast low-flow variables at the seasonal lead time

3. Model the Arzal reservoir

Seasonal precipitation forecasts + Hydro model

8

Precipitation climatology + Hydro model

Available precipitations

Selected Precipitation climatology + Hydro model

15 members

Seasonal precipitation forecasts + Hydro model

d0 t (days)

15 members

- Streamflow records at the Vilaine : too short for robust comparison
- Use of other catchments for validation
 - 16 French catchments
 - From the PREMHYCE project database Nicolle et al. 2014
- Available data
 - Q observed > 30 yrs
 Banque HYDRO
 - Pobserved 1958 2011 SAFRAN reanalysis
 - P forecast 1981 2010 ECMWF forecasts

Quality	Criterion	Description
Overall performance	CRPS	Error in the cumulative distribution
Reliability	PIT	Forecast probability vs. Observed probability
Sharpness	IQR 90%	« Width » of the ensemble

Skill score in regards to a reference

- IfSkill > 0, thenSyst > RefIfSkill = 0, thenSyst ~ RefIfSkill < 0, then</td>Syst ~ Ref
- If Skill < 0, then Syst < Ref

 $Skill = 1 - \frac{Score (syst)}{Score (ref)}$

ECMWF forecasts are the best ensemble overall ClimP_SPI3 and ClimP equivalent at long lead times

1. Forecast inflows at the seasonal lead time

2. Forecast low-flow variables at the seasonal lead time

3. Model the Arzal reservoir

17

- 1. Forecast inflows at the seasonal lead time
- 2. Forecast low-flow variables at the seasonal lead time

3. Model the Arzal reservoir

Shutters and Sluice gates

irstea

Lock

Siphon

Fish pass and Fish scale

The Arzal dam

Flow through the siphons (m3/s)

Reservoir balance

 $V[t] = V[t-1] + \Delta V[t]$

 $\Delta V[t] = + Vin[t] - Vout[t]$

 $\forall [\dagger] = \forall [\dagger - 1] + \Delta \forall [\dagger]$

 $\Delta V[t] = + V \text{ inflows}[t-1] + V P[t] - V ETP[t]$

- V sluice gates[t] - V shutters[t] - V siphons[t]

- V lock[t] - V withdrawals[t] - V fish pass[t]

 \rightarrow Investigation needed

- Comparison of several pre-processing for ECMWF seasonal precipitation forecasts
- Comparison of several inflow forecasts
- Building of risk visualization graphs
- Simulations based on simple reservoir balance

Perspectives

- Correct terms in reservoir balance
- Test reservoir model for extreme scenarios
- rstea Test post-processing of streamflow forecasts

Thank you !

Ke ANT.

irstea