

Progress toward ensemble 7-day streamflow forecast for Australia

David Robertson, QJ Wang, James Bennett, Durga Lal Shrestha, Yong Song, Ming Li, Jean-Michel Perraud, Robert Bridgart, Alex Sha

CSIRO LAND AND WATER www.csiro.au

Deterministic 7-day streamflow forecasts

(www.bom.gov.au/water/7daystreamflow)

An end-user's case for ensemble forecasts (Environmental flow manager)

7-day forecasts will allow:

- "understand risk of catchment runoff at time of release"
- "manage flooding risk"
- Risk = likelihood × consequence
- "Good handle on consequences"

A deterministic service only gives an expected flow scenario and not likelihood of different scenarios

Forecasting challenges

CSIRC

Ensemble forecasting framework

Ensemble forecast system components

Observed data

Adapted from existing flood forecasting service

Rainfall forecasts

RPP (Bayesian rainfall forecast post-processor)

Runoff and routing models

Semi-distributed; GR4H, Muskingum ...

Hydrological error

Dual pass error correction (Pagano, Wang, Hapuarachchi, Robertson, 2011, JoH)

Verification

Cross validation scheme

Ensemble forecast system components

Observed data

Adapted from existing flood forecasting service

Rainfall forecasts

RPP (Bayesian rainfall post-processor)

• Runoff and routing models

Semi-distributed; GR4H, Muskingum ...

Hydrological error

Dual pass error correction (Pagano, Wang, Hapuarachchi, Robertson, 2011, JoH)

Verification

Cross validation scheme

Rainfall forecasts

CSIRC

Rainfall forecast post-processing

(Robertson, Shrestha, Wang, 2013, HESS) Step 1: Correct biases and quantify uncertainty

- Modified Bayesian joint probability (BJP) model
 - Log-sinh transformation (Wang, Shrestha, Robertson, Pokhrel, 2012, WRR)
 - Treatment of zero data
 - Continuous bivariate normal distribution

Step 2: Instill temporal and spatial patterns

• Schaake Shuffle (Clark, Gangopadhyay, Hay, Rajagopalan, Wilby, 2004, JHM)

Rainfall forecast post-processing

Rainfall forecast reliability

Rainfall forecast post-processing – spatial effects

What rainfall forecast product?

Forecaster updated

What forecast product?

What forecast product?

CSIRO

Ensemble forecast system components

Observed data

Adapted from existing flood forecasting service

Rainfall forecasts

RPP (Bayesian rainfall post-processor)

Runoff and routing models

Semi-distributed; GR4H, Muskingum ...

Hydrological error

Dual pass error correction (Pagano, Wang, Hapuarachchi, Robertson, 2011, JoH)

Verification

Cross validation scheme

Hydrological modelling

Bennett, Robertson, Shrestha, Wang, Enever, Hapuarachchi, Tuteja (2014) JoH

Streamflow forecasts - putting it all together

Forecasts issued on 18-Mar-2012 21:00 for 19-Mar-2012 00:00 (UTC)

Bennett, Robertson, Shrestha, Wang, et al. (2014) JoH

Performance of streamflow forecasts

Streamflow forecast reliability

Error Reduction and Representation in Stages (ERRIS)

Performance of streamflow forecasts

Florentine River (169 km²)

Streamflow forecast reliability

Forecast reliability in ephemeral catchments

Standard uniform variate

Summary

Users are demanding reliable ensemble forecasts for lead-times to 7 days

Post-processing catchment precipitation forecasts

- Necessary for forecasts to 'beat' climatology
- More important that the source of forecast precipitation
- Generating accurate and reliable ensemble streamflow forecasts requires
 - Reliable ensemble rainfall at the catchment scale with minimal bias
 - Correction and quantification of errors in hydrological modelling

Ongoing research directions

- Producing reliable uncertainty in ephemeral catchments
- Dealing with streamflow forecast bias
- Better (ensemble) estimates of catchment rainfall

Dr David Robertson

Senior Research Scientist

t +61 3 9545 2431

e david.robertson@csiro.au

CSIRO LAND AND WATER www.csiro.au

