

Hydrological Ensemble Predictions of The Feilaixia Basin

Aizhong Ye, Feng Ma, Zheng Zhou, and <u>Qingyun Duan</u> GCESS/Beijing Normal University

2016-6-8

2016/6/22

Outline

- 1. Background
- Beijing Normal University Hydrological Ensemble Predict System (BNU-HEPS)
- Hydrologic Ensemble Predictions of the Feilaixia
 Basin

Background

- Feilaixia Basin, located north of Guangzhou City, suffers from frequent flood hazards
- The basin contains many reservoirs, which play a critical role in flood protection of Guangzhou City

Feilaixia basin

 Accurate and reliable reservoir inflow forecasts critical to the optimal reservoir operations for flood protection purpose

Goal

- To develop a multi-model hydrologic ensemble prediction system which follows the HEPEX framework:
 - Incorporating precipitation and temperature forecasts from numerical weather and climate prediction models
 - Integrating ensemble pre-processing, land data assimilation, parameter optimization and ensemble post-processing
 - Including multiple hydrologic models
 - Ensemble verification

Questions to Be Answered

- How much can we gain from NWP precipitation forecasts over the precipitation climatology?
- How important is pre-processing of NWP precipitation forecasts?
- How much can we gain from multiple hydrological models and multi-model averaging?

The HEPEX Framework

The BNU-HEPS Framework

2016/6/22

The Ensemble Pre-Processor (EPP)

• Objective:

 To produce reliable and skillful ensemble precipitation and temperature forecasts that can be used to drive hydrological models

• Functions:

- Produce ensemble forcing from weather and climate forecasts (including single-valued QPF, QTF, and ensemble GFS, CFS)
- Remove bias in weather and climate forecasts
- **Correct spread** problems in meteorological ensembles
- Preserve space-time variability and uncertainty structure
- **Downscale** meteorological forecasts to hydrological basins

Liu, Y., Q. Duan, L. Zhao, A. Ye, Y. Tao, C. Miao, X. Mu, and J. C. Schaake (2013), Evaluating the predictive skill of post-processed NCEP GFS ensemble precipitation forecasts in China's Huai river basin, Hydrological Processes, 27(1), 57-74.

The EPP Methodology

The Distributed Time-Variant Gain Hydrologic Model

Runoff			
Water balance:	$P_i + W_i = W_{i+1} + Rs_i +$	$-E_i + Rss_i -$	$+Rg_i$
Runoff:	$Rs_i = g_1 \left(\frac{AW}{Wum \cdot Cov_j}\right)^{g^2} \cdot P_i$	0 <g1<1< th=""><th>0<g2< th=""></g2<></th></g1<1<>	0 <g2< th=""></g2<>
Soil moisture :	$AW = \frac{Wu_i + Wu_{i+1}}{2}$	$W_i = W u_i +$	$+Wg_i$
Evaporation:	$E_{i} = \frac{AW \cdot Ep_{i}}{Wum \cdot Cov_{j}}$	Vegetation ≺	
Subsurface runoff:	$Rss_i = AW \cdot Kr$	Surface	Rs
Ground water:	$Rg_i = Wg_i \cdot Kg$	soil ≺ layer	∠] \`
L	if $(W_i > Wgm)$ then $\Delta Wg = Wgm - Wg_i$	Middle soil ≺	
	$Wg_i = Wgm$	Sub-	Ground water surface
	$wu_i = wu_i - \Delta wg$ else	surface 2 soil layer	Rg
	$Wg_i = W_i$		

Ye A, Duan Q, Zeng H, Li L, Wang C, 2010. A Distributed Time—Variant Gain Hydrological Model Based on Remote Sensing. *Journal of Resources and Ecology* **1**, 222-30.

The Distributed Xinanjiang Hydrologic Model

Zhao, R. J. The Xinanjiang model applied in China. Journal of Hydrology. 135, 371–381.

The Distributed Sacramento Hydrologic Model

K. Ajami N, Gupta H, Wagener T, & Sorooshian S (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1–4):112-135.

The Routing Model

The routing model is kinematic wave model.

Saint — Venant equations: mass conservation equation and momentum equation

- 1. Number of node
- 2. Calculate from headwater to outlet of basin
- 3、 the out discharge is next node's input discharge
- 4. the discharge of the outlet is the basin discharge

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q \qquad \qquad S_f - S_0 = 0$$

Ye A, Duan Q, Zhan C, Liu Z, Mao Y, 2013. Improving kinematic wave routing scheme in Community Land Model. Hydrology Research 44, 886-903.

Verification Measures .1

Verification Measures.	Formulas .	Descriptions .	Perfect/ No skill₀
Nash- Sutcliffe efficiency value (NSE).	$NSE = 1 - \frac{\sum_{i=1}^{N} (x_i - y_i)^2}{\sum_{i=1}^{N} (y_i - \overline{y})^2} $	Assessing the	
NSE calculated on inverse. transformed flows.	$NSE_{I} = 1 - \frac{\sum_{i=1}^{N} \left(\frac{1}{x_{i}} - \frac{1}{y_{i}}\right)^{2}}{\sum_{i=1}^{N} \left(\frac{1}{y_{i}} - \frac{1}{y_{i}}\right)^{2}} \overset{\circ}{\longrightarrow}$	of hydrological models; quantitatively describe the accuracy between	1 / ≤0⊷
NSE calculated on benchmark model.	$NSE_{B} = 1 - \frac{\sum_{i=1}^{N} (x_{i} - y_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - z_{i})^{2}} $	─ forecasts and observations	
Root Mean Square Error (RMSE),	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2} \mathbf{v}$	Association of forecasts and observations over a long time period.	0/∞⊷
Pearson Correlation Coefficient	$R = \frac{\sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \overline{y})^2}} $	Linear dependency between forecasts and observations.	1 / ≤0₊∘
rBias₊	$rBias = \left(\sum_{i=1}^{N} x_i \right) -1 \cdot 100\%^{\circ}$	Relative difference between forecasts and observations.	0/∞↔

Verification Measures .2

Verification Measures.	Formulas .	Descriptions .	Perfect/ No skill.
BSS₊	$BS = \left[flag(y,t) - \frac{1}{n} \sum_{i=1}^{n} flag(x_i,t) \right]^2$ $flag(x,t) = \begin{cases} 1, x \ge t & & \\ 0, x < t & \\ BSS = \left(1 - \frac{BS}{BS_{ref}}\right), x_j < y < x_{j+1} \end{cases}$	Brier Skill Score. t is the threshold. Ref. is a reference forecast (e.g., climatology).	1/0.
CRPSS.	$CRPS = \sum_{i=1}^{j-1} P_i^2 \cdot (x_{i+1} - x_i) + P_j^2 \cdot (y - x_j)$ $+ (P_j - 1)^2 \cdot (x_{j+1} - y) + \sum_{i=j+1}^n (P_i - 1)^2 \cdot (x_{i+1} - x_i)$ $CRPSS = \left(1 - \frac{CRPS}{CRPS_{ref}}\right), x_j < y < x_{j+1}$	Continuous Rank Probability Skill Score. P is the probability that was forecast.	1/0.

The BNU-HEPS Software Platform

○ 水文集合预报系统												- 🗆 ×
HEPS Hydrology Ensemble Prediction System Beijing Normal University												
地图 模型计算 数据	绘图 精	問助										
保存参数 模型计算 读入数据 产流模块: 回支增益 ●												
单元模型			综合構	塑								
模型设置 表格显示 2	文本显示	图片即	显示 数据	踮 流域	地图							
综合横型 ◎ 水文模型					模型输入				模型	参数		
○ 参数修订												
用収土埋	VACD	Name	Remark	DataTvp	e Value1	VACD	Name	Value1	Max1	Min1	Unit	Rema
融雪模块	101101	FBatt	流域属性	数据库	FixPar ^	101201	BeginD	1986-1-1 0:00	2100-12-31	1900-12-31	yyyy-mm-dd	开始计算个
产流模块	101102	FRain	单元雨量	文件	E:\2014面上基金\data\飞来峡数据\19572009P.to	101202	EndD	2008-12-28 0:00	2100-12-31	1900-12-31	yyyy-mm-dd	结束计算
Y= ++ 1+1+	101103	FEvap	单元蒸发	文件	E:\2014面上基金\data\飞来峡数据\19562013E.to	101203	RCount	730	100000	1		要计算的印
汇 流模块	101104	FFlow	实测流量	数据库	FlxDayQ1	101204	Interval	1440	1440000	1	min	计算时间间隔
人类活动	101105	101105 FMoPara 月参数 数据库 MonthPara		MonthPara	101205	g1	1	1	0		产流计算	
后的理	101100						g2	1	5	1		产流计算
		-			模 刑 输 出	101207	Kr	1	1	0		土壤水出
集合验证						101208	Krg	1	1	0		地下水出
其它系统		<u> </u>				101209	fc	1	1000	0	mm/h	上层到下层的稳定
A Stall	VACD	Name	Remark	DataType	Value1	101210	Kaw	0.6	1	0		蒸发权重
	101301	FSWetU	单元土湿上	文件 E	:\2014面上基金\data\飞来峡数据\Output\SoilWU.txt ^	101211	Pc	200	1000	0	mm	降雨阈值
	101302	FSWetD	单元土湿下	文件 E	:\2014面上基金\data\飞来峡数据\Output\soilWD.txt	101212	Snow	0	999	0	mm	融雪径流
She 1	101303	FRunoff	单元径流	文件	E:\2014面上基金\data\飞来峡数据\Output\RS.txt	101213	Pi	0.2	100	0	mm	单位时间截流
- A	101305	FAEvap	单元蒸发	文件	E:\2014面上基金\data\飞来峡数据\Output\evap.txt	101214	RoughRss	1	1	0.001		曼宁公式耀
	101306	FResult	综合结果	文件	E:\2014面上基金\data\飞来峡数据\Output\sim.txt	101215	а	1	9999	1		河宽回归系数(2
	101311	ЕСИН	西兰厄府	±>//+ ⊑	+vs Hwore/truttiO/states//etch/今甘⊣ 而N10C/->	101016 <	+br	F00	1000	1	km A D	+++
界面升级。											2016	-6-2 23:29:39

Data for Feilaixia Basin Study

- NCEP Global Ensemble Forecast System (GEFS) forecasts:
 - Data period: 1984-2016
 - Precipitation/Temperature forecasts with16-day lead-time for every day 1.0°x1.0° global coverage (360x181)
 - Data format: Grib2
 - Observed Daily Precipitation:
 - Data period: 1957-2016
 - 0.5°x0.5° Grid
 - Observed Daily Discharge:
 - Data period: 1980-2010
 - Feilaixia station (Outlet)

The Correlation between GEFS Forecasted and Observed Precipitation

How much can we gain from preprocessing of GEFS precipitation forecasts?

Bias removal

The DTVGM Streamflow Discharge Simulation

Calibration

• Verification

The XAJ Streamflow Discharge Simulation

Calibration

Verification

The SAC Streamflow Discharge Simulation

Calibration

Verification

Summary of Performance Measures For Different Models

Model		R	NSE	NSE _I	NSE _B	rBias	RMSE
DTVGM	Calibration (1980-1999)	0.941	0.883	0.166	0.841	-5.5%	459.363
	Validation (2000-2009)	0.901	0.786	0.419	0.711	6.3%	574.552
XAJ	Calibration (1980-1999)	0.93	0.857	-4.709	0.806	-10.1	506.434
	Validation (2000-2009)	0.91	0.771	0.564	0.691	16.1%	593.465
SAC	Calibration (1980-1999)	0.937	0.878	-78.9	0.835	-0.5%	467.907
	Validation (2000-2009)	0.888	0.741	-69.248	0.651	11.3%	631.507

The DTVGM Model Performance Measures

2016/6/22

The XAJ Model Performance Measures

The SAC Model Performance Measures

Summary

- A hydrological ensemble prediction system (BNU-HEPS) has been developed which follows the HEPEX framework. Currently BNU-HEPS has the following functions
 - Ensemble pre-processing
 - Parametric uncertainty quantification
 - Multi-hydrological models
 - Verification
 - Ensemble post-processing
- Applications in Feilaixia basin:
 - Raw GEFS is not as good as ESP, but the pre-processed GEFS is much better than ESP
- Future plan:
 - To incorporate data assimilation and multi-model averaging functions into BNU-HEPS

A few words on "Handbook of Hydrometeorological Ensemble Forecasting"

- Editors-in-Chiefs:
 - Q. Duan, F. Pappenberger, J. Thielen, A. Wood, H. Cloke and J. Schaake

Book Structure:

- 11 Sections
- Total number of chapters assigned: 59
 - Pending chapters (not yet overdue): 16
 - Overdue chapters: 6
 - Chapters in review: 21
 - In production: 16
- <u>Updated timelines:</u>
 - All chapters due: June 30, 2016, with exceptions approved by EICs
 - All reviews completed by July 31, 2016
 - Online version completion: December 31, 2016
 - Print version: sometime in 2017

Charaks

Contact: qyduan@bnu.edu.cn azye@bnu.edu.cn