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Goals

Use hindcasting to help inform real-time forecasting through:

O Identify potential benefits of using more complex methods
O Assessing new methods that use both climate and land information
O Demonstrating an over-the-loop paradigm (fully-automated forecast test-bed)
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Those research
forecasts are too much
of a black box to use in
my river basin ...
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This study: systematic inter-comparison of methods
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Study sites

Five basins upstream reservoirs in the U.S. Pacific Northwest
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3. Results

What added value does climate information bring?

Example:
Hungry Horse
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Example:
What added value does climate information bring? Hungry Horse
Forecast skill across methods for Apr-Jul runoff
E
7]
)]
(al
oC
O
Oct 1 Nov 1 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1
only land only climate Land + climate
—%ESP —o— Stat.(Indices) | |- Stat.(Ind+IHC)  —e—EWE
-©—BC-ESP ||+ Stat.(CFSR) ||—+— Stat.(CFSR+IHC) —— RWE
—w— Stat.(IHC) —— SICER —7— BMA
—>%— TWS —<— QMA

12
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Example:

What added value does climate information bring? Hungry Horse

Forecast skill across methods for Apr-Jul runoff
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O Before January 1: we can beat benchmark only using climate info.
O Later initialization: An IHC regression can be as skillful as ESP.
O Hybrid approaches appear strongest overall 13




Outline: 3. Results

U.S. Pacific
What added value does climate information bring? Northwest
Forecast skill across methods for Apr-Jul runoff
Hungry Horse Reservoir Inflow, MT Dworshak Reservoir Inflow, ID
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O Climate info relevant in early initializations, and land info dominates after January 1.
O At later initializations, similar or better skill can be obtained with simpler methods. 14
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3. Results

Standard indices or custom (reanalysis) predictors?
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 Statistical models with standard indices outperform those using custom indices
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Outline: 3. Results
Skill in dry/wet years

In late season, climate
predictors alone don’t work

Oct1 to Apr 1 hindcasts
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What methods do better in dry years?
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3. Results

Skill in dry/wet years

Runoff [MAF]

Oct1 to Apr 1 hindcasts; 1997
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In late season, climate
predictors alone don’t work
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What methods do better in wet years?
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Outline: 3. Results

WY 2016: initialized April 1

Apr-Jul runoff
Hungry Horse

Apr-Jul Runoff; Period: 1981-2015
Hungry Horse Reservoir, MT (HHWMS)
Correlation = 0.785
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Outline: 3. Results

Website: www.ral.ucar.edu/staff/wood/case studies wr/
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A small set of watersheds is being implemented for
assessment of reservoir inflow forecasts. The et T
watersheds are relatively unimpaired 'headwater-ish' Location: DWRI1
basins that provide inflows for reservoirs managed by
collaborators, including the federal water agencies (US
Army Corps of Engineers and Bureau of Reclamation).

Current water supply forecasts for different runoff periods. The forecasts are represented in several ways:

-- The current forecast is plotted along with hindcasts from prior years (using the same methodology). and their verifying
observations. The climatological distribution is also shown by the horizontal dashed lines across the plot.

-- PDFs for several forecasting approaches are shown, compared to their historical distributions for 1980-2010.

Regions

14 17 18 -- Scatter plots of the forecast distributions for all years. versus observations. for the different methods.
uco PN CA
TBA | HHWMS Hunary Horse Res. Inflow TBA Data files are available for the different forecasts below the plots for each forecast period.

DWRI1 Dworshak Res. Inflow
HHDW1 Howard Hanson Res. Inflow

PRVO Prineville Res. Inflow x :
LYDM3 Libby Res. Inflow May-September | April-July | April-September | Back to Top

A larger set of forecast demonstration watersheds that Apr Bzg:zﬁ:ivg :;gfva ;tr‘ ';ADa{DSvsg IF: ;moff
will have forecasts but not be the focus of reservoir F vk PR

manager interactions is shown in a Hydro Case Study Method: Statistical with IHC (SWE+SM)
Watersheds page. Those case studies were selected
from the much larger CONUS-wide dataset of O Observations
Newman et al. (2015) for use in assessing @ Current forecast
hydroclimate forecasting data and methods.
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These basins are considered relatively unimpaired
(part of the HCDN network) but also have water
management significance -- eg. provide inflow for
reservoirs -- or were included for their relevance to
other studies. The basin subsets can change given
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http://www.ral.ucar.edu/staff/wood/case_studies_wr/

Outline: 4. Summary
Summary and Future work

d An inter-comparison framework has been developed including
statistical, dynamical and hybrid approaches.

 Findings
= Hybrid combinations of climate and watershed predictability provide gains.
= Custom (reanalysis) indices do not outperform standard climate indices.
= Trace-weighting works only if ESP works.

(d Real-time WSFs being operationalized (in process)

= Real-time system IHCs and ESPs coming online with new gridded ensemble
forcing.

* Interactions with Boise Area Office (Reclamation) helping shape products.

= Other water management groups interested (e.g., BPA, Tacoma Power, Idaho
Power) as well as NWS (NWRFC, CNRFC).

Next Steps

J Operationalize non-WSF predictands (1 month, 3 month)
1 Ongoing diagnostics to understand forecast discrepancies
1 Adding new basins for interested partners
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