

Preserving the space-time dependence structure of precipitation for hydro-meteorological forecasting:

A case study with analog-derived PQPF

Joseph Bellier 1*, Isabella Zin 1, Guillaume Bontron 2 and Stanislas Siblot 2

¹ LTHE, Université Grenoble Alpes, Grenoble, FRANCE

² Compagnie Nationale du Rhône, Lyon, FRANCE

* Corresponding author: joseph.bellier@univ-grenoble-alpes.fr

Problem:

Because of $\begin{cases} \text{post-processing} \\ \text{scale mismatch,} \\ \end{bmatrix} \Rightarrow \text{Wrong (or any) space-time dependence structure} \end{cases}$

How can we reconstruct the space-time coherence?

How can we evaluate it?

Problem:

Because of $\begin{cases} \text{post-processing} \\ \text{scale mismatch,} \\ \end{cases} \Rightarrow Wrong (or any)$ **space-time dependence structure** \end{cases}

How can we reconstruct the space-time coherence?

How can we evaluate it?

Case study :

Precipitation forecasts from an analog method

Papers:

Problem:

Because of Scale mismatch, post-processing, ... Wrong (or not all) space-time dependence structure

How can we reconstruct the space-time coherence?

I. Reordering methods:	•	Existing methods
	•	Adaptation of the Schaake shuffle using analogs

How can we evaluate it?

II. 3-step verification:	 Correlations check Multivariate verification score Verification on streamflow 	
Case study :	Precipitation forecasts from an analog method	

Exemple in 2D:

What is a reordering?

08/06/2016

Exemple in 2D:

What is a reordering?

I. Reordering methods

I. Reordering methods

08/06/2016

2016 HEPEX Workshop - Québec

How can we evaluate these methods?

Verification period: 2008-2014 1 forecast/day (00 UTC)

1. Check of space-time climatological correlations:

Points on the diagonal = Good

Multivariate forecast of dimension 20 (5 catchments × 4 lead times)

 \Rightarrow 190 possible pairs of dimension \Rightarrow 190 points

X-coordinate = Observed correlation Y-coordinate = Forecast correlation

(using Spearman's rank correlation coefficient)

2. Use of a multivariate verification score:

- Energy Score (ES): extension of the CRPS in dimensions > 1.
 - \Rightarrow dependent of the correlation structure

(Gneiting and Raftery, 2007)

2. Use of a multivariate verification score:

- Energy Score (ES): extension of the CRPS in dimensions > 1.
 - \Rightarrow dependent of the correlation structure

(Gneiting and Raftery, 2007)

2. Use of a multivariate verification score:

- Energy Score (ES): extension of the CRPS in dimensions > 1.
 - \Rightarrow dependent of the correlation structure

(Gneiting and Raftery, 2007)

Mean ES over all forecasts:

3. Verification on streamflow

What is the variable of interest?

In a hydropower production forecasting context:

What is the variable of interest?

In a hydropower production forecasting context:

What is the variable of interest?

In a **flood warning** context:

- \Rightarrow Is the ES the best metric to evaluate precipitation forecasts for hydrological purposes?
- \Rightarrow Best precipitation forecasts always lead to best streamflow forecasts?

Conclusion

- Existing reordering methods
 - +

Adaptation of the Schaake shuffle

Reordering depending on the atmospheric situations

- 3-step verification strategy:
 - 1. Correlation check
 - 2. Multivariate score
 - 3. Verification on streamflow

- \Rightarrow Necessary but not sufficient (climatology only)
- \Rightarrow In case of no *a priori* about the use of forecasts
- \Rightarrow Necessary since conclusions may be different!

Conclusion

Existing reordering methods

+

Adaptation of the Schaake shuffle

Reordering depending on the atmospheric situations

- 3-step verification strategy:
 - Correlation check ⇒ Necessary but not sufficient (climatology only)
 Multivariate score ⇒ In case of no *a priori* about the use of forecasts
 Verification on streamflow ⇒ Necessary since conclusions may be different!

Perspectives

- ⇒ Search numerically for **"best"** and **"worst" reordering** on **streamflow forecasts**.
 - \rightarrow To evaluate the potential of improvement
 - ightarrow To conclude about the impact of reordering on streamflow forecasting
 - ightarrow To better understand links between Energy Score and Streamflow verification
- \Rightarrow With other forecasts (including Temperature?)

Thank you for your attention

