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Uncertainties in Hydrologic Modeling 

1) Meteorological forcing 

 Earth’s chaotic atmosphere makes 

forecasting unreliable at extended 

lead times 

 

2) Initial condition (states) 

 Land surface hydrological 

conditions are highly variable 

spatially (e.g., snow and soil 

moisture) 

 

3) Hydrologic model 

 Hydrologic models are 

simplifications to land surface 

processes 

Snow 

Soil Moisture 

? 



 Requires the formulation of  a probabilistic model 

   

 

Quantifying Uncertainty 

p(y) = f (p(x), p(u),q)+ p(w)

Snow 

Soil Moisture 

Probabilistic 

Forecast 

 xp

 up  p

 yp



Operational Probabilistic Forecasts 

 Generated with Ensemble Streamflow Prediction (ESP) 

 

 This ignores initial state and model uncertainty 

 Ensemble Data Assimilation 
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Ensemble Data Assimilation 
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 Combines single-value forecasts. 

𝑴𝒂𝒗𝒆 = 𝑾𝟏.𝑴𝟏 +𝑾𝟐.𝑴𝟐 + …+𝑾𝒌.𝑴𝒌 

• Examples: Equal weights, Bates-
Granger averaging , AIC and BIC-
based model averaging. 

MA is a linear weighted average of model ensembles. 
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 Deterministic Probabilistic 

Model Averaging 

Madadgar and Moradkhani (2014) 



Bayesian Model Averaging 
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Combining PF-SBC with ESP 
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Combination of DA, Multi-modeling and ESP 

DeChant and Moradkhani (2014) 



Modeling Cases 

 Two Models 

1) Variable Infiltration Capacity (VIC) 

 Physically-based distributed model 

 

2) Coupled SNOW-17 and Sacramento models (NWS) 

 Conceptual semi-distributed models 

 

 Three cases for forecast spin-up 

1) Open Loop (no assimilation) 

 

2) Passive Microwave Brightness Temperature (TB) 

 

3) Land Surface Temperature (LST) with TB 

 



Weights or Importance of Each Model 



Reliability of volumetric streamflow forecasts 

Multi-remotely 

sensed Data 

Assimilation. PF-

SBC is showing 

combined data 

assimilation and 

Multi-Modeling 



Operational Data Assimilation 

Implement data assimilation within FEWS framework 

 

• Build a system that allows for implementation with any model 

connected to FEWS (even models that will be connected in the 

future) 

• Make the system flexible, allowing users to adjust the 

application of data assimilation (lumped vs distributed, 

multiple data sources, complex timing of observation time-

series ...) 

• Utilize existing FEWS-CHPS functionalities to simplify the data 

assimilation program 



Challenges for DA in FEWS/CHPS 

o The general FEWS workflow system is not conducive to DA 

• Entire time series are sent to models 

• Lots of I/O – computationally expensive 

 

oBalance of computational demand, flexibility of framework and 

minimization of coding 

• Depending on where the DA algorithm is placed, the computational demand, 

model flexibility and amount of coding necessary will be effected 

 

oOpted for significant coding in the pursuit of system flexibility 

with minimal computational cost 

• Required software development to create a data assimilation model driver 

(DADriver) 

 



Simulation without/with DA 

No Data Assimilation 

• OHDFewsAdapter ships data for 

model runs one at a time 

• Each model’s driver performs 

simulation over the whole time 

series 

• OHDFewsAdapter imports 

output data from single model 

 

Data Assimilation 

• OHDFewsAdapter ships data 

for multiple model runs  

• DADriver only gives data 

required to run driver to the 

next observation 

• OHDFewsAdapter imports 

data from all models involved 

in DA simultaneously 



Data Assimilation within FEWS/CHPS 

Over the Pacific Northwest US 



Ensemble Simulation for SWE before and after DA 

Clackamas River Basin 



Streamflow Forecast Before DA   “Johnson Creek” 

Before DA  



Streamflow Forecast after DA     “Johnson Creek” 

RMSE 

%15 

% Improvement 



Streamflow Forecast before/after DA     

 “Johnson Creek” 



Pacific Northwest Drought 

• The proposed method was verified with two drought 
events in 2013 and 2015 in Pacific Northwest (PNW). 
 

• In 2013 spring (A-M-J), drought was declared for 9 counties 
in the southern Idaho. After 3 months, drought emergency 
was issued for 19 counties. 
 

• In 2015 winter (J-F-M), PNW received historically low 
snowpack. Washington and Oregon governor declared 
state drought emergence in 2015 spring. 
 

• Seasonal drought forecasting for the two drought events 
were applied using the proposed method. 



Data Assimilation System for initializing the 
Drought Forecast 

USGS-PRMS Process  
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Madadgar and Moradkhani (2013) 



Seasonal Drought Forecasting Results  

 
• The results demonstrate 

the benefit of the 
proposed probabilistic 
forecasting system to aid 
the stakeholders for 
drought preparation and 
declaration, 3 to 6 months 
in advance 
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