

Comparison of Kalman Filter Type and Variational Data Assimilation Approaches for Operational Hydrology

Dirk Schwanenberg (Deltares, University of Duisburg-Essen), Rodolfo Alvarado Montero (University of Duisburg-Essen), Albrecht Weerts (Deltares, Wageningen University)

2016 HEPEX Workshop Ensemble for better hydrological forecasts 6-8 June 2016, Québec, Canada Data Assimilation (DA) in hydrology:

- DA improves the system state of hydrological models at forecast time as the initial condition of subsequent forecasts
- Available techniques:
 - Sequential versus simultaneous techniques
 - Deterministic versus probabilistic approaches
 - Black box approaches such as the Ensemble Kalman Filter (EnKF) versus variational methods (4DVar) which need adjoint models and various hybrids

Deltares

• Overview in Liu et al., 2012, but still a lack of comparisons in application to hydrological forecasting models

Joint efforts to make DA broadly available for operational applications and to compare different approaches:

- H-SAF sub-project by University of Duisburg-Essen and German Federal Institute of Hydrology to develop novel variational DA methods (4DVar) and compare them against Kalman Filter style approaches in OpenDA, visiting scientist activity of Deltares
- General OpenDA development at Deltares in collaboration with TU Delft, VORtech, DHI and TNO
- Many specific OpenDA applications in operational hydrology at Deltares and Wageningen University

OpenDA (<u>http://www.openda.org/</u>):

- Toolbox for data-assimilation and calibration of arbitrary numerical models
- Ensemble KF (EnKF), Asynchronous Ensemble KF (AsEnKF), Ensemble SquareRoot KF (EnSR), Particle Filter, 3DVar

RTC-Tools (<u>http://oss.deltares.nl/web/RTC-Tools</u>):

- Model library including HBV implementation and routing schemes providing first-order sensitivities, i.e. adjoint models, for variational DA
- Moving Horizon Estimation (aka 4DVar)

Short Review of DA Methodology

Hydrological model according to:

$$x^{k}_{(true) state} = \underbrace{f\left(x^{k-1}, u^{k}\right)}_{\text{prediction model}} + \underbrace{\Delta x^{k}}_{\text{process noise}}$$
$$y^{k}_{\text{observation}} = \underbrace{g\left(x^{k}\right)}_{\text{observation model}} + \underbrace{\Delta y^{k}}_{\text{observation noise}}$$

Common assumption: noise is a zero mean multivariate normal distribution $\Delta x^k \approx N(0, Q^k), \Delta y^k \approx N(0, R^k)$ with covariance matrices Q^k, R^k

Short Review of DA Methodology (2) Kalman Filter

Prediction step: KF: linear **EKF**: linearized predicted state estimate $x_{sim}^{k} = \underbrace{F^{k} x^{k-1}}_{k-1} + \underbrace{B^{k} u^{k}}_{k-1} \leftarrow$ **EnKF:** sampled prediction mode predicted covariance estimate $P^{k|k-1} = F^k P^{k-1|k-1} F^{k,T} + O^k$ EnKF: no explicit Update step: computation, repr. by observed residual $\Delta y^k = y^k - H^k x^k$ state ensemble observation model residual covariance $S^{k} = H^{k} P^{k|k-1} H^{k,T} + R^{k}$ Kalman gain $K^{k} = P^{k|k-1}H^{k,T}S^{k,-1}$ updated state estimate $x^{k} = x_{sim}^{k} + K^{k} \Delta y^{k}$ updated covariance estimate $P^{k|k} = (I - K^k H^k) P^{k-1|k}$

Short Review of DA Methodology (3) 4Dvar aka Moving Horizon Estimation

Reformulation of the DA problem by cost function and minimization by optimization algorithm:

$$\begin{pmatrix} y^{k} - H^{k} x^{k} \end{pmatrix}^{T} R^{k,-1} \begin{pmatrix} y^{k} - H^{k} x^{k} \end{pmatrix}$$

$$= \Delta y^{k,T} R^{k,-1} \Delta y^{k}$$

$$\approx \frac{1}{\sigma_{obs}^{2}} \left\| \Delta y^{k} \right\| \quad \text{may handle arbitrary PDF or norms}$$

$$\text{simultaneous DA over several time steps}$$

$$\min_{\Delta x, \Delta y} \sum_{k=-N+1}^{0} w_{obs} \left\| y_{obs}^{k} - y_{sim}^{k} (\Delta x, \Delta y) \right\| + w_{\Delta x} \left\| \Delta x^{k} \right\| + w_{\Delta y} \left\| \Delta y^{k} \right\|$$

$$\text{subject to} \quad \Delta x_{L} \leq \Delta x^{k} \leq \Delta x_{U}, \quad \Delta y_{L} \leq \Delta y^{k} \leq \Delta y_{U} \text{ etc.}$$

$$\text{optional constraints}$$

4DVar:

- + simultaneous technique over several time steps
- + suitable for reanalysis
- <u>requires first-order sensitivities</u>, i.e. adjoint code, and preferably a smooth model
- deterministic approach

Ensemble KF:

- + applicable on black-box models, simple to implement
- + probabilistic approach
- sequential technique, has issues with time lags

see also Skachko et al. (2014): Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model, Geosci. Model Dev., 7, 1451–1465, 2014

Example: Snow Accumulation and Melt Assimilation of observed flow only

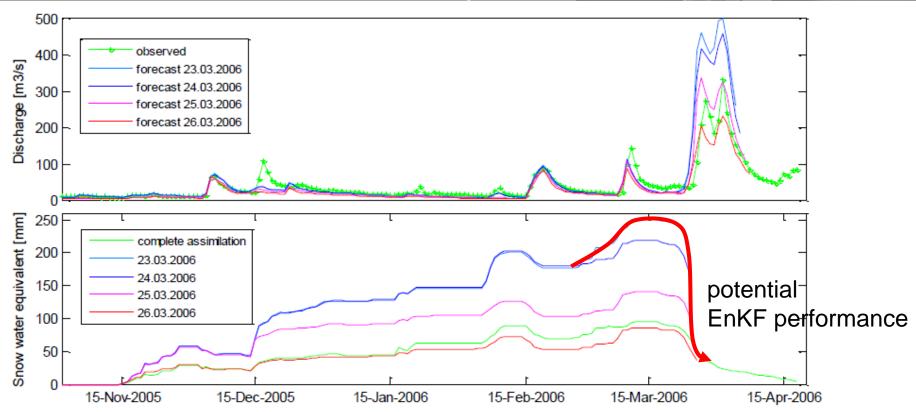


Figure 2. Lead time performance of the Main1 model for a flood event in March 2006 using observed discharge in the assimilation: i) above: comparison of observed and (assimilated) forecasted streamflow of forecast times between March 23-26, ii) below: comparison of "perfect" and assimilated snow water equivalent for the same forecasts.

Example: Snow Accumulation and Melt (2) Assimilation of observed flow and "perfect" SWE

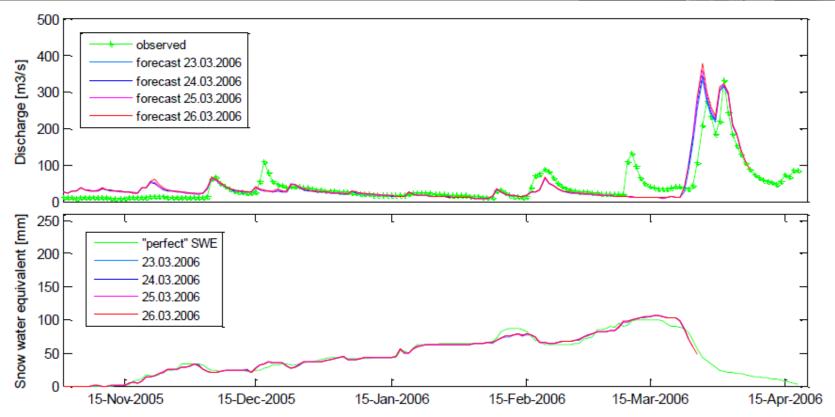
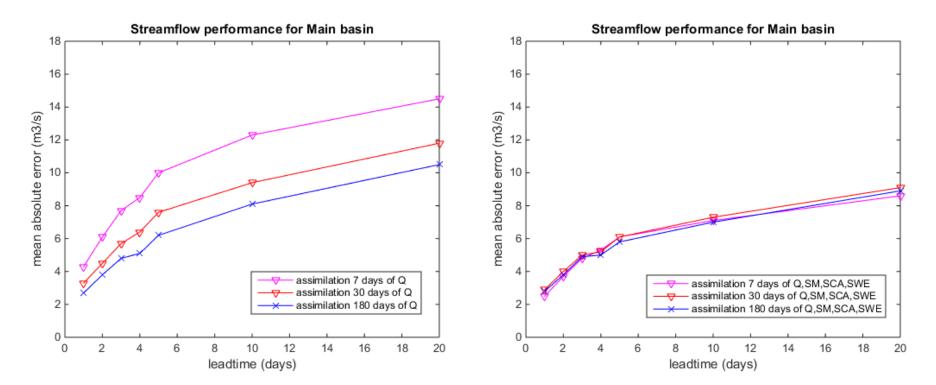


Figure 3. Lead time performance of the Main1 model for a flood event in March 2006 using observed snow water equivalent and discharge in the assimilation: i) above: comparison of observed and (assimilated) forecasted streamflow of forecast times between March 23-26, ii) below: comparison of "perfect" and assimilated snow water equivalent for the same forecasts.

Which observation has added value?

Variable		Objective Function Term	Soil moisture performance for Main basin
Model Inputs	Precipitation (P)	$w_P(\Delta P^k)^2$	15 ×
	Temperature (<i>T</i>)	$w_T(\Delta T^k)^2$	\$\vec{1}{2}\$ 10 \$\vec{1}{2}\$ 10
Model States	Snow Water Equivalent ($SWE = SP + WC$)	$w_{SWE}(\hat{s}_{SWE}^k - s_{SWE}^k)^2$	by the state of t
	Soil Moisture (SM)	$W_{SM}(\hat{s}_{SM}^{k}-s_{SM}^{k})^{2}+W_{\Delta SM}(\Delta s_{SM}^{k})^{2}$	2
	Upper Zone Storage (UZ)	$W_{\Delta UZ}(\Delta s_{UZ}^k)^2$	0 2 4 6 8 10 12 14 16 18 2 lead time (days) Main basin
	Lower Zone Storage (<i>LZ</i>)	$w_{\Delta LZ} (\Delta s_{LZ}^k)^2$	
Model Outputs	Snow Covered Area (SCA)	$w_Q(\hat{A}_{SCA}^k - A_{SCA}^k)^2 \qquad \qquad$	-▼-▼
	Discharge (Q)	$w_Q(\hat{Q}^k - Q^k)^2$	
<u>http://dx.</u>	doi.org/10.1016/j.advw	$\frac{w_Q(A_{SCA} - A_{SCA})}{w_Q(\hat{Q}^k - Q^k)^2}$	▲ □ no DA → □ update P → □ update T → · · · · · · · · · · · · · · · · · · ·


Deltares

2016 HEPEX Workshop, Québec, Canada

What optimization window to use?

Assimilation of streamflow only

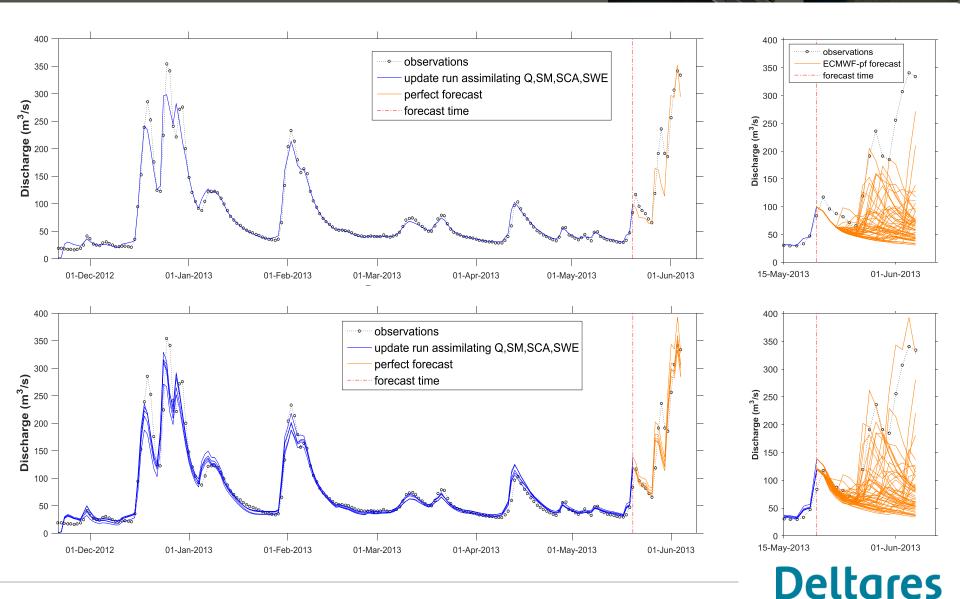
Assimilation of streamflow, SCA, SWE and SM

Example: Snow Accumulation and Melt (3) Discussion / Conclusions

Benefit of the simultaneous approach for processes such as snow accumulation and melt (with long memory):

- EnKF corrects when detects (challenge to update with sufficient skill to keep the snow pack meaningful from physical perspective)
- MHE/4DVar reconstructs the snow pack within the estimation window leading to
 - Snow pack with more physical meaning
 - Historical reanalysis
 - Robust against missing and noisy data
- Difference between approaches becomes less relevant if snow products from observations or remote sensing get used for continuous updates

Important benefit of EnKF (over MHE/4DVar):


 <u>Sampled</u> distribution of states represent the model uncertainty in the initial condition and the subsequent forecast

Our current research looks into approaches to make the MHE/4DVar approach more probabilistic:

- Introduction of a model pool instead of a single model
- Variation of model structure and model parameters

see poster: Rodolfo Alvarado Montero, Dirk Schwanenberg, Peter Krahe, VARIATIONAL DATA ASSIMILATION BY MOVING HORIZON ESTIMATION AND A PROBABILISTIC POOL OF CONCEPTUAL HYDROLOGICAL MODELS

Representation of Uncertainty in Initial State (2)

2016 HEPEX Workshop, Québec, Canada

Representation of Uncertainty in Initial State (3) Discussion / Conclusions

The use of model pools instead of a single deterministic model in variational DA seems to have some benefits to represent model uncertainty (which is not propagation out of the model).

Our current work:

- Include different model structures in the model pool (so far only parametric uncertainty)
- Comparison against EnKF, Asynchronous EnKF, Particle Filter etc.

Remark: The approach is quite challenging from a technical perspective (adjoint of model pool etc.).

Outlook

- Broad application of various DA techniques for a representative number of river basins:
 - Break-out session "Assimilate your basin" on Thursday
 - Dissemination activities in the H-SAF project and at Deltares
- Further efforts to streamline freely available DA tools and make them available to the public
- Approaching scientific papers in 2016:
 - Comparison of several DA techniques in application to conceptual hydrological models
 - Probabilistic MHE/4DVar

Thank you for your attention!

Recent publications:

- D. Schwanenberg, R. Alvarado Montero, Total Variation Diminishing and Mass Conservative Implementation of Hydrological Flow Routing, J. Hydrology, <u>http://dx.doi.org/10.1016/j.jhydrol.2016.05.007</u>
- R. Alvarado Montero et al., Moving horizon estimation for assimilating H-SAF remote sensing data into the HBV hydrological model, Advances in Water Resources, Volume 92, June 2016, Pages 248-257, ISSN 0309-1708, <u>http://dx.doi.org/10.1016/j.advwatres.2016.04.011</u>
- F. Mainardi Fan, D. Schwanenberg, R. Alvarado Montero, A. Assis dos Reis, W. Collischonn, S. Naumann, Performance of deterministic and probabilistic hydrological forecasts for the short-term optimization of a tropical hydropower reservoir, Water Resources Management (accepted)