S2S hydrological forecasts over Europe

Fredrik Wetterhall

fredrik.wetterhall@ecmwf.int

Francesca Di Giuseppe, Louise Arnal, Florian Pappenberger, Blazej Krzeminski

© ECMWF February 14, 2018

Motivation

Sub-seasonal to seasonal hydrological forecasts are *potentially* useful for decision makers.

BUT, they need to be **skilful** and **reliable** on the **lead times** needed for a **specific application**.

The main aim of the study: To assess the limits of hydrological forecast predictability at the S2S time scale over Europe

Q: How to construct the best S2S forecast given operational systems?

Q: Are there regimes (high/low flow), regional and seasonal variations that affect the predictability?

Q: How much of the predictability can be attributed to hydrological initial conditions and how much from atmospheric model?

Q: Given that the above is are answered, can the forecasts provide "actionable" information?

European flood awareness system (www.efas.eu)

Operational 24/7/365

5 km resolution across Europe ~250K points

Twice daily probabilistic forecasts

Experiment setup

Forcing	Spatial	Lead time	Issued	Ensembles	Hindcast
Seasonal	80 km	7/12 months	Monthly	51/15	30 years
Extended	18/32 km	46 days	2/week	51/11	20 years
Obs.	5 km	N/A	N/A	Climatology	27 years

A first step towards a "seamless" forecast

Concatenation of extended-range and seasonal forecast after day 47

One year of experiments, 111 starting dates, 20 years, 6 months fc

Validation on outlets against model climatology using weekly averages

Advantage: Frequent updates of S2S forecast and long lead times

Problem: Forecasts are not fully compatible. Not "seamless", but merged **ECRWF** EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 5

Results: CRPSS against climatology

The skill drops quite quickly. After 4 weeks, most areas show no skill against climatology

CRPSS SEAM, limit of probability

CRPSS SEAM vs SYS4

Mean relative error

Main problem: Drift in bias, not closing the water balance

Sources of bias: + Precipitation, - Evapotranspiration, +/- Other?

Spatial variability of bias

Limits of predictability, CRPS daily values

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Performance differs depending on flow regime

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Seasonality, which season has greater skill?

Number of days until CRPSS<0 (skilful)

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Conclusions and future work

Conclusions

- ✓ Merged forecast has higher skill than SYS4, on average up to 4 weeks.
- ✓ Best skill for winter, low flow, northern Europe
- ✓ Hydrological initial conditions very dominant
- Bias increasing with lead time
- ✓ Forecasts are over-confident, not fully reliable
- ✓ Actionable forecasts on S2S range potentially useful

Future work

- Sensitivity study on cause of bias
- Bias correction (post-or preprocessing?)
- Model improvements (new seasonal fc, LSM and hydrological model)
- Develop decision support tool where forecasts are reliable and skilful

Actionable forecasts, ex. low flow in the Rhein

Read more in the HEPEX special issue in HESS

Submit a manuscript

	Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
1	EGU.eu EGU Journals EGU Highlight Articles Contact Imprint
Manuscript tracking	Special issue
	Sub-seasonal to seasonal hydrological forecasting

Simon Schick, Ole Rössler, and Rolf Weingartner

02 Feb 2018

(Summary)

l	About		
	Editoria	I	bo

Α	rtı	c	P	
A	rτι	CI	e:	

Special issues

Published special issues

Schedule

How to apply

Highlight articles
Subscribe to alerts
Peer review
For authors
For reviewers

01 Feb 2018 State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application Matthew S. Gibbs, David McInemey, Greer Humphrey, Mark A. Thyer, Holger R. Maier, Graeme C. Dandy, and Dmitri Kavetski Hydrol. Earth Syst. Sci., 22, 871-887, https://doi.org/10.5194/hess-22-871-2018, 2018 22 Jan 2018

Editor(s): F. Wetterhall, I. G. Pechlivanidis, M.-H. Ramos, A. Wood, Q. J. Wang, E. Zehe, and U. Ehret

Download citations of all papers: Bibtex EndNote Reference Manager

Monthly streamflow forecasting at varying spatial scales in the Rhine basin

Hydrol. Earth Syst. Sci., 22, 929-942, https://doi.org/10.5194/hess-22-929-2018, 2018

A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS