#### HEPEX 2018 University of Melbourne

# Are global models skilful in forecasting floods, and their impacts in data scarce areas?

Micha Werner (1,2), Gaby Gründermann (1), Ted Veldkamp (3)

(1) IHE Delft, Department of Water Science and Engineering, The Netherlands

- (2) Deltares, The Netherlands
- (3) Free University Amsterdam, Amsterdam, the Netherlands

Visit our website: www.earth2observe.eu

This project has received funding from the European Union's Seventh Programme for research technological development and demonstration under grant agreement No 603608





#### **Motivation**





Introduction How to Use Development

Data Services About

Main eartH2Observe website »



# **Motivation**

- Global models have potential for assessment and prediction of flood hazard in areas with insufficient data
  - Asymmetric availability of data (transboundary basins)
  - Period of record of consistent hydrological data short
- But...
  - How good are these models in predicting floods and their impacts?
  - What about scale (basin scale, resolution of hydrological model)?



# Approach

- Case Study: Limpopo Basin in Southern Africa
  - South Africa; Botswana; Zimbabwe; Mozambique
- Selection of global models from EartH2Observe Water Resources Reanalysis (WRR) that include simulated discharge
  - WRR1: Resolution 0.5 degrees; Daily; Forced by WFDEI Dataset; 1979-2012
  - WRR2: Resolution 0.25 degrees; Daily; Forced by MSWEP Dataset; 1980-2014
- Comparison against 2 Benchmarks

A: Observed discharges at (reliable) discharge stations across basin

B: Chronology of impacting flood events from disaster databases

Table 1: Overview of the seven global models in the Water Resources Re-analysis dataset that include simulated discharge in rivers

| Model                | Model Type   | Resolution<br>(degrees) | Lakes-<br>Reservoirs | Water use   | Routing                      | Reference                        |  |
|----------------------|--------------|-------------------------|----------------------|-------------|------------------------------|----------------------------------|--|
| HTESSEL-CaMa         | LSM          | 0.5 & 0.25              | No                   | No          | CaMa-Flood                   | (Balsamo et al., 2009)           |  |
| LISFLOOD             | GHM          | 0.5 & 0.25              | Yes                  | Yes         | Double kinematic<br>wave     | (van der Knijff et al., 2008)    |  |
| ORCHIDEE             | LSM          | 0.5                     | No                   | No          | Linear cascade of reservoirs | (Krinner et al., 2005)           |  |
| PCR-GLOBWB           | GHM          | 0.5                     | WRR1 only<br>lakes   | Not in WRR1 | Travel time                  | (van Beek and Bierkens,<br>2009) |  |
| SURFEX-TRIP          | LSM          | 0.5                     | No                   | No          | TRIP with stream             | (Decharme et al., 2010)          |  |
| WaterGAP3            | GHM          | 0.5 & 0.25              | Yes                  | Yes         | Manning-Strickler            | (Flörke et al., 2013)            |  |
| W3RA                 | GHM          | 0.5                     | No                   | No          | Cascading linear reservoirs  | (van Dijk et al., 2014)          |  |
| Ensemble<br>7 models | GHM &<br>LSM | 0.5                     | Various              | Various     | Various                      | N/A                              |  |

[Source: Schellekens et al. 2017; Dutra et al., 2015]

# **Benchmark A. Observed discharges**



 72 Stations
Performance of simulated discharge
Flood Severity Level

| - | Flood    | Annual       | Return<br>Period<br>[years] |  |  |  |
|---|----------|--------------|-----------------------------|--|--|--|
|   | Severity | Exceedance   |                             |  |  |  |
|   | Level    | Probability  |                             |  |  |  |
| - | 0        | ≤0.303       | $\geq 2$                    |  |  |  |
| 5 | 1        | ≤0.164       | $\geq 5$                    |  |  |  |
|   | 2        | $\leq$ 0.090 | $\geq$ 10                   |  |  |  |
|   | 3        | ≤0.038       | ≥25                         |  |  |  |
|   | 4        | $\leq$ 0.010 | $\geq 100$                  |  |  |  |
|   | 5        | $\leq$ 0.005 | ≥ 200                       |  |  |  |

## **Benchmark B. Reported impacting flood events**

- EM-DAT (CRED & Guha-Sapir, 2017)
- GAALFE Dartmouth Flood Observatory (Brakenridge, 2017)
- NatCatSERVICE Munich Re (Kron et al., 2012)
- Severity Level 0-5 based on NatCatSERVICE amended for no. of casualties / Basin Level

| Database      | Country or<br>region  | Start      | Duration<br>[days] | Fatalities | People<br>displaced | People affected | Overall damages<br>[million USD] | Severity<br>level | Magnitude | Affected<br>area [km2] | Lat    | Lon            |
|---------------|-----------------------|------------|--------------------|------------|---------------------|-----------------|----------------------------------|-------------------|-----------|------------------------|--------|----------------|
| EM-DAT        | BW                    | 01/02/2000 | 29                 | 3          | -                   | 138,776         | 5                                | -                 | -         | -                      | -      | -              |
| EM-DAT        | MZ                    | 26/01/2000 | 62                 | 800        | -                   | 4,500,000       | 419                              | -                 | -         | -                      | -      | -              |
| EM-DAT        | ZA                    | 26/01/2000 | 62                 | 83         | -                   | 200             | 160                              | -                 | -         | -                      | -      | -              |
| EM-DAT        | ZW                    | 26/01/2000 | 62                 | 70         | -                   | 266,000         | 73                               | -                 | -         | -                      | -      | -              |
| GAALFE        | MZ, ZA, BW,<br>ZW, MW | 26/01/2000 | 62                 | 929        | 733,000             | -               | 1,000                            | 2                 | 7.7       | 439,043                | 31.71  | <b>-</b> 27.82 |
| NatCatSERVICE | BW                    | 05/02/2000 | 5                  | 8          | 10,000              | -               | -                                | 2                 | -         | -                      | -21.18 | 27.53          |
| NatCatSERVICE | MZ                    | 05/02/2000 | 45                 | 700        | 544,000             | -               | 300                              | 4                 | -         | -                      | -25.97 | 32.57          |
| NatCatSERVICE | ZA                    | 05/02/2000 | 25                 | 83         | 200,000             | -               | 160                              | 3                 | -         | -                      | -26    | 30             |
| NatCatSERVICE | ZW                    | 05/02/2000 | 49                 | 100        |                     | -               | 55                               | 4                 | -         | -                      | -19    | 29             |
| Other sources | Whole basin           |            |                    | 700        |                     | 2,000,000       |                                  |                   |           |                        |        |                |
| Thesis        | Whole basin           | 05/02/2000 | 45                 | 700        | 754,000             | 2,000,000       | 515                              | 5                 |           |                        |        |                |

### **Benchmark B. Reported impacting flood events**

- EM-DAT (CRED & Guha-Sapir, 2017)
- GAALFE Dartmouth Flood Observatory (Brakenridge, 2017)
- NatCatSERVICE Munich Re (Kron et al., 2012)
- Severity Level 0-5 based on NatCatSERVICE amended for no. of casualties
- Sub Basin/Country Level



# **Model performance**



NSE

PBIAS

Correlation

# **Occurrence of Flood Events**



Example for WaterGAP model at Spookspruit & Limpopo gauges

Flood events identified using model climatology (MM1 & MM2)

Flood events identified using observed climatology (MO1 & MO2)

Digit indicates model resolution; 1 - WRR1 (0.5 degrees); 2 – WRR2 (0.25 degrees)

#### **Occurrence of Flood Events (against observed)**



CSI; POD & FAR using Annual exceedance probability threshold of 0.164 (5 years return period) for all gauging stations. WRR1 (upper panel) & WRR2 (lower panel).

# Simulated return periods of reported flood events



The relationship of the flood event severity for the reported flood events, and the corresponding annual exceedance probabilities that were observed and modelled for (a) HTESSEL-CaMa, (b) LISFLOOD, and (c) WaterGAP3.

# **Discussion & Conclusions**

- Overall performance of global models in simulating hydrological behaviour rather poor for smaller catchments
  - WRR1 basic representation of hydrological behaviour > ~2500 km2
  - WRR2 basic representation of hydrological behaviour > ~520 km2
- Skill of identifying observed flood events reasonable but only when using model climatology.
- Models also show some skill in identifying flood events that cause impacts
  - important for their use in e.g. global forecasting systems
  - Improves for improved resolution WRR2 models (with exceptions)
- Global models provide information consistently also for transboundary basins with asymmetric data availability
- Caveats: Inclusion of human influences in models and data; reliability of gauged discharges, particularly at peaks