



## Improving hydrological modelling/predictions for the Rhine river

Albrecht Weerts<sup>1,2</sup>, Bart van Osnabrugge<sup>1,2</sup>, Willem van Verseveld<sup>1</sup> <sup>1</sup>Deltares, <sup>2</sup>WUR





Nether

France

Bordea

## Flood risk in the Netherlands

### Introduction

- 60% of the Netherlands is flood prone caused by both riverine flooding and storms surge or a combination of the two
- Policy / Climate Change Delta commission
  - major flood/drought policy works if needed (1 billion euros is set aside)
  - GRADE: Generator of RAinfall and Discharge Extremes to calculate 1/10000 flood discharge and shape flood wave
- Clustered multi-hazard EWS
  - RWsOS Rivers for daily water level and flood forecasting
    - feeds forecasts/simulations into:
      - RWsOS Water Resources
      - RWsOS Lakes (wind driven flood hazard)
      - RWsOS NDB (shipping/port of Rotterdam/Maeslant barrier)



## Current=>IMPREX=> and beyond

|   |                      | Current                                                                                                                                                                                                                                       | IMPREX                                                                                                                                                                                                                                        | and beyond                                                                                                                                                                                                                                                                                        |
|---|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Flood<br>Forecasting | Lumped HBV96<br>-hourly<br>-height zones linked to<br>station certain height<br>-fixed PET profiles<br>-fixed interception (g/f)<br>-big calibration effort<br>(last time 2008)<br>-many correction factors,<br>WB fiddling<br>-closed source | wflow_hbv<br>-hourly<br>-distributed P, T<br><u>-ensemble DA</u><br>-downscaling ECMWF T<br>-open source<br>Open question:<br>-Makkink Eref/PET<br>derived from Landsaf<br>Rg (or need for<br>recalibration)?<br>-Forecasted Makkink<br>Eref? | wflow_sbm<br>-improve fidelity<br>process formulations<br>-hourly<br>-distributed P, T,<br>Makkink Eref (Landsaf)<br>-LAI from<br>MODIS/Landsaf<br>-PTF <-> parameters<br>(as little calibration as<br>possible)<br>-ensemble DA<br>-forecasted P, Eref, T<br>(downscaled)<br>-open source, FAIR? |
| @ | Policy               | HBV96<br>-daily<br>-big calibration effort<br>(completed 2014)<br>-multiple parameter sets<br>-lumped P&T generator                                                                                                                           | wflow_hbv<br>-daily or subhourly<br>-Makkink PET derived<br>from Landsaf (or need<br>for recalibration)?<br>-multiple parameter<br>sets                                                                                                       | wflow_sbm<br>-daily or subhourly<br><u>-landuse scenarios</u><br>-multiple parameter<br>sets?                                                                                                                                                                                                     |

## Research question

- Can we develop a methodology (for real-time application) to derive gridded hourly forcing for the Rhine catchment statistical similar to calibration data set (best estimate)?
- What is the skill of the current EPS against the observed gridded forcing datasets?
- Can we transfer parameters from a lumped to a distributed model version (testing findings Melsen et al. 2016)?
- Can we develop a model with improved fidelity of physical processes with no/less calibration



## real-time gridded forcing datase

Rainfall: Osnabrugge et al., 2017 WRR

- Calculate daily or hourly anomaly
- Inverse distance interpolation of rainfall anomaly
- Multiply with monthly background grid

#### Temperature:

-use DEM/lapse rate to bring station values to same height

interpolate IDW, use lapse rate+DEM
to bring to height DEM

Radiation/Eref:

-downscaled from CMSAF+LSA SAF

+ gaps filled with ERA5







## Gridded precipitation



Osnabrugge et al., 2017 WRR

7

30 [%] 20

10

0

-10

-20

-30

## Gridded precipitation



Osnabrugge et al., 2017 WRR







## Precipitation verification reforecast dataset (1997-2016)









#### van Osnabrugge et al., 2018 (to be submitted) Skill Precipitation ECMWF-EPS over Rhine basin



0.9

0.6

0.7

0.8

0.4 0.5

0.9

0.8

0.7

0.4 0.5 0.6

0.9

0.4

0.5 0.6

0.7

0.8

## van Osnabrugge et al., 2018 (to be submitted) 2m Temperature verification reforecast dataset (1997-2016)



Spatial distribution of Temperature Mean Absolute Error for different lead times





# Skill Temperature ECMWF-EPS over Rhine basin

Temperature Skill scores for different leadtimes



A .....

### Global (shortwave downward) radiation and Eref verification reforecast dataset (1997-2016)



Spatial distribution of Makkink potential Evaporation Mean Absolute Error for different lead times



## Skill global radiation ECMWF-EPS over Rhine



## Transfer parameters from lumped to gridded model

![](_page_14_Picture_1.jpeg)

|   |                           | HBV96                                   | wflow_hbv                           |
|---|---------------------------|-----------------------------------------|-------------------------------------|
|   | Upper/Lower zone          | Polygon averaged                        | Varying per pixel                   |
|   | Routing                   | Muskingum<br>(calibrated)               | Kinematic wave<br>(uncalibrated)    |
|   | Vertical discretisation   | Heightzones (area)                      | Varying per pixel                   |
|   | Vegetation                | Forest/grass<br>(heightzones , area)    | Forest/grass<br>(Varying per pixel) |
|   | Temperature               | area averaged + lapse rate              | downscaled via DEM +lapse rate      |
| e | Coding/Numerical solution | Closed<br>- Recstep used for upper zone | Open<br>-lakes<br>-upper zone       |
|   | Glaciers                  | Glaciers included                       | No Glaciers (yet)                   |

![](_page_14_Picture_3.jpeg)

## Actual Evaporation

#### wflow\_hbv vs HBV96

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

## Snow Water Equivalent (SWE)

#### wflow\_hbv vs HBV96

![](_page_16_Figure_2.jpeg)

![](_page_16_Picture_3.jpeg)

## Snow Water Equivalent (SWE)

#### wflow\_hbv vs HBV96

Unrealistic pattern (Emme vs Aare 1 and 2)

SWE in wflow\_hbv in higher Alps much lower than in HBV96 especially in basins with negative TT values (strange anyway) also resulting in unrealistic patterns (see above)

Solution: negative TT value set to same value as for Emme subbasins Enabled avalanches/mass transport via DEM downwards

![](_page_17_Picture_7.jpeg)

## Snow Water Equivalent (SWE)

#### wflow\_hbv vs HBV96

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_0.jpeg)

#### wflow\_hbv vs HBV96

![](_page_19_Figure_2.jpeg)

S.A.

![](_page_20_Picture_0.jpeg)

#### wflow\_hbv vs HBV96

#### Table 2. KGE lake levels (period 1/1/1990-31/12/2006)

| Lake               | HBV96 | wflow_hbv |
|--------------------|-------|-----------|
| Bodensee (upper)   | 0.84  | 0.77      |
| Bodensee (lower)   | 0.86  | 0.80      |
| Lac Neuchatel      | 0.84  | 0.63      |
| Bielersee          | 0.83  | 0.82      |
| Murtensee          | 0.35  | 0.38      |
| Zurichsee          | 0.94  | 0.84      |
| Vierwaldstattersee | 0.22  | 0.35      |

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_6.jpeg)

## Discharge

#### wflow\_hbv vs HBV96

#### Table 3. KGE lake levels (period 1/1/1990-31/12/2006)

|  | Location    | HBV96 | wflow_hbv |
|--|-------------|-------|-----------|
|  | Aare 1      | 0.71  | 0.44      |
|  | Thur        | 0.84  | 0.81      |
|  | Maxau       | 0.79  | 0.70      |
|  | Rockenau    | -     | -         |
|  | Raunheim    | 0.87  | 0.82      |
|  | Cochem      | 0.91  | 0.89      |
|  | Kalkhofen   | 0.66  | 0.67      |
|  | Menden      | 0.91  | 0.93      |
|  | Hattingen   | 0.80  | 0.80      |
|  | Schermbeck  | 0.78  | 0.74      |
|  | Altenahr    | 0.89  | 0.79      |
|  | Opladen     | 0.70  | 0.48      |
|  | Boos (Nahe) | 0.80  | 0.84      |
|  | Emmerich    | 0.91  | 0.87      |

![](_page_21_Picture_4.jpeg)

## Discharge - Emmerich

#### wflow\_hbv vs HBV96

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_4.jpeg)

## Conclusions

- Hourly gridded forcing dataset Rhine river developed and is/will be made available
- Verification of P,T, Rg, Makkink Eref shows that main limit is skill of P in Rhine (no skill after ~5-10 days)
- Conversion of HBV96 to wflow\_hbv shows
  - behaviour largely the same except for snow dominated areas;
  - Actual evaporation HBV96/wflow\_hbv is overestimated when comparing with Landsaf;
  - TT parameter gets much more sensitive (and needs tuning especially over Alps);
  - Several errors/issues detected in calibration/config. lumped model

26

 Investigate DA on improving forecast skill will start now (=> also HEPEX DA testbed)

First results into use of combining gridded forcing data, MODIS

based LAI and wflow\_sbm (topog) model based on PTF (so farms calibration) are promising

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Picture_3.jpeg)

![](_page_25_Picture_0.jpeg)

### Acknowledgement

![](_page_25_Picture_2.jpeg)

IMPREX is a research project supported by the European Commission under the Horizon 2020 Framework Programme

Grant Agreement No 641811

Duration: 01/10/15 - 01/10/19

![](_page_25_Picture_6.jpeg)

#### **Contact details**

Deltares

Albrecht Weerts Albrecht.weerts@deltares.nl

www.imprex.eu

![](_page_25_Picture_11.jpeg)