

SHORT-TERM STREAMFLOW FORECASTING IN THE SNOWY MOUNTAINS

An experimental streamflow forecasting system based on artificial neural networks.

Thomas Chubb, Andrew Peace, and James Pirozzi HEPEX 2018 workshop, February 8th, 2018

Background & motivation

- Inflow forecasts are essential in planning hydroelectric operations
 - Need water above plant to generate
 - Need airspace below plant to manage tailwater
 - Subject to constraints in Water Licence
- Legacy/operational inflow forecasts are prepared manually
 - Statistical: snowpack, daily rainfall, Tmax, etc...
 - Requires 2 staff, takes 2-3 hours
 - No information about timing or rate of peak flows
 - Unable to respond to changes in conditions

Why artificial neural networks (and what are they anyway)?

• ANNs are mathematical devices inspired by biological nervous systems.

Why artificial neural networks (and what are they anyway)?

- ANNs are mathematical devices inspired by biological nervous systems.
- They can be "trained" to optimally fit arbitrary datasets.
 - Plenty of data available!

Simple ANN predicts near-term streamflow response accurately

Current streamflow Lagged precipitation Lagged temperature [Lagged wind speed] Snowpack Time of day

Recursion of neural network permits longer-term forecasts

- We use the Weather Research and Forecast model (WRF) to provide some meteorological drivers.
- Snow surveys are conducted once per week at three sites during winter.
- Seasonality of catchment behaviour is built in to the training; ANNs are trained using a 60 day-of-year window.
- Ensembles of neural nets and perturbed precipitation inputs to represent forecast uncertainty

ANNIE: the Artificial Neural Network Inflow Estimator

11/23/2017

Guthega Weather Station 💿

Alpinettet

(Snowy River Gauging Station (1598m)

(Mt Kosciuszko (2228m)

2620

Image © 2017 CNES / Airbus C 2017 Google

Cross validation approach

- Neural networks are trained for each week of 2011-2017:
 - Observations used (not model data).
 - Two week window dropped from training data.
 - Multiple configurations tested
- Evaluation of forecasts:
 - Created using OBSERVED drivers ("perfect prognosis")

"Perfect prognosis" results: case studies

Event 1: Extreme winter rainfall event

Control

- Little difference between configurations for this event
- This extreme event is practically unprecedented in the training dataset

Event 2: Springtime rainfall/snowfall

Control

- Control+WS seems to slightly outperform Control
- No Snow configuration has muted response to rainfall

Event 3: Late spring pure snowmelt

Control

- All configurations show a diurnal cycle (fits to time of day and temperature)
- Diurnal cycle on both Control and Control+WS matches observations much more closely
- No Snow configuration drifts away from observations

Event 4: Early summer rainfall after dry spell

Control

- This example shows the potential benefit of incorporating a soil moisture parameter
- No particular advantage to any of the configurations

Objective intercomparison of configurations

- Compared "hindcasts" for 2011-2017 for these three configurations using RMSE and Bias
- VERY SIMILAR performance overall
- NO SNOW shows decrease of skill in winter/spring (particularly Nov)
- CTRL+WS is (probably insignificantly) better than CTRL.

	RMSE				
Jan	1.97	1.90	1.93		
Feb	9.01	9.09	9.04		
Mar	7.44	7.30	7.32		
Apr	1.70	1.52	1.60		
May	4.85	4.76	4.50		
Jun	3.57	3.45	3.69		
Jul	3.73	3.52	4.12	823	
Aug	1.55	1.45	1.69	14	
Sep	5.02	5.04	5.04		
Oct	4.76	4.56	5.42		
Nov	2.99	3.01	3.93		
Dec	2.26	2.37	2.46		
Ann	4.64	4.58	4.76		

CTRL RL WS SNOW

1.4	0.02	0.01	0.06
N.	0.26	0.21	0.26
V.	0.22	0.24	0.95
12	0.95	0.90	0.79
1	0.26	0.21	0.12
1	0.18	0.24	0.17
	-0.19	-0.14	-0.21
	-0.20	-0.23	-0.18
	-0.25	-0.24	-0.22
	-0.17	-0.14	-0.12
	-0.31	-0.36	-0.36
	-0.63	-0.72	-0.60
	0.10	0.14	0.11

Bias

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Ann

Summary

- ANNIE is an experimental inflow forecasting tool currently in use at Snowy Hydro.
- Short-term streamflow response to meteorological drivers is characterised by an ensemble of artificial neural networks.
- Recursion over these provides a multi-day streamflow forecast.
- Formal validation of the model is under way with some interesting early results.
- Use of snow improves winter/spring forecasts
- Use of a soil moisture variable has the potential to improve summer forecasts

Thanks for your attention! For more info contact: thomas.chubb@snowyhydro.com.au