Comparison of Ensemble Flood Forecasts from Two Regional EPS: Simple Downscaling of Global EPS and Regional Data Assimilation

Tomoki Ushiyama

International Centre for Water Hazard and Risk Management (ICHARM), Public Works Research (PWRI), Japan HEPEX Workshop, Melbourne 6 Feb.2018

Regional ensemble prediction system (EPS)

- Simple Downscaling of Global EPS
- Regional Data Assimilation

Regional EPS

Simple Downscaling

Regional data assimilation

Regional Data Assimilation by WRF-LETKF (Miyoshi and Kunii 2012)

- Assimilated data: PREPBUFR(U, V, T, Q, PS)+GPS PWV
- 27~33 ensemble members

Analyzed cases

Location	River	Time	Phenomenon	
Japan	Kinugawa	Sep.	Mesoscale	
	River	2015	rainband	
Philippines	Pampanga	Jun.	Typhoon	
	River	2011		

Kinugawa River flood on 10 Sep.2015

Outer domain:

Boundary condition: JMA-GSM Kain&Fritsch cumulus scheme Inner domain: No cumulus scheme

Kinugawa river catchment area 1760 km^2

Δx=100m

Ensemble rainfall/Flood forecasts

Ensemble streamflow forecasts

6000

Regional data assimilation by WRF-LETKF: 27 member Ensemble (25-75%) median

WRF Model domain for Philippines

40 35

Outer domain:

Boundary Grell3D c +shallow Inner doi No cumu

Pampanga river catchment 10434 km²

RRI model

Ensemble rainfall/flood forecasts

Ensemble streamflow forecasts

Simple downscaling: 16 member

Regional data assimilation by WRF-LETKF: 33 member

Discussions

Country	Phenomen on	U spread	U RMSE	U bias	Assimilat ed OBS
Japan	Mesoscale rainband	0.8 m/s	6 - 8 m/s	2 m/s	10000
Philippine s	Typhoon	1.2 m/2	6 - 12 m/s	5 - 12 m/s	7000

Conclusion

- Regional data assimilation by WRF-LETKF was better in Japan.
- Simple downscaling was better in Philippines.
- We'd be careful to choose the better method of regional EPS.

Thank you for attention!