Confidence In Flood Warning Systems And The Value Of Ensemble Forecasts

> Koffi Akakpo* Marie-Amélie Boucher[†] Vincent Boucher*

* Department of Economics, Université Laval † Department of Civil Engineering, Université de Sherbrooke

February 2018

Value of a Forecast

Characteristics of a forecast

- Quality \rightarrow Fits the observation? (e.g. CRPS)
- Value \rightarrow Useful for decision making?

Which decision? Who makes it?

- Hydrological power \rightarrow \$\$\$ (but safe)
- Flood mitigation → Prevention/defences, evacuation...

Montmorency River

Decisions

- Spending (sandbagging, staff...) Matte et al. (2017)
- Alert
- Active Evacuation

If DM was only to base decision on forecasts

- Dressed deterministic
- Meteorological Ensembles (with/without state variable uncertainty estimation)
- We know: CRPS and Overspending

This Presentation

Alerting the population (binary decision)

- Risk aversion
- Alerts allow time to adjust (e.g. emptying basement)
- False alerts and missed events reduce credibility of future alerts

How we do that? (stochastic dynamic programming)

- Fix: cost, loss, risk aversion, confidence sensibility, initial confidence.
- Data: Forecasts (probability of a flood)

Optimal decision

Forecasts (Density|*Prob* > 0)

What it looks like

(Daily: 2011-2014)

Best Forecast? (Preliminary)

Optimal decisions:

- False Alerts: Dressed deterministic > Ensembles
- Missed Events: Dressed deterministic > Ensembles
- Confidence: Dressed deterministic < Ensembles

Value:

- Ensemble forecasts have higher value
- Order of magnitude: pprox 0.2 0.4% of avoidable damages.

Next

Why?

- Ensemble forecasts: larger spread, upward bias
- Something else?

To do:

- Robustness of the calibration
- Features of a high value forecast?
- Post processing?
- User-friendly code