

Trended climatology for seasonal streamflow forecasts

Tristan D. J. Graham, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yating Tang

Australian Government

Bureau of Meteorology

ARC Linkage Project (LP170100922) partners

Overview

- Seasonal streamflow forecasts
- Climatology as long-lead forecast
- The problem with climatology
- Proposed solution
- Initial results
- Application
- Conclusion

Seasonal streamflow forecasts

- Monthly or seasonal total flow
- Several months in advance
- Used for
 - Waterway and reservoir management
 - Water availability
 - Drought and flood risk
- BoM's SSF website

Source: http://www.bom.gov.au/water/ssf/

Climatology as long-lead forecast

- Historical distribution
- Differentiate seasons
- Forecasts differ
- Approach climatology

Climatology as long-lead forecast

- Historical distribution
- Differentiate seasons
- Forecasts differ
- Approach climatology

- Climatology is stationary
- BUT we have observed trends

Figure 9. Maps showing trends of seasonal flow in (a) Q_{DJF} summer flow; (b) Q_{MAM} autumn flow; (c) Q_{JJA} winter flow; (d) Q_{SON} spring flow.

- Climatology is stationary
- BUT we have observed trends

- Climatology is stationary
- BUT we have observed trends

- Climatology is stationary
- BUT we have observed trends

- Climatology is stationary
- BUT we have observed trends

- Climatology is stationary
- BUT we have observed trends
- We can't use all the data

- Climatology is stationary
- BUT we have observed trends
- We can't use all the data

- Climatology is stationary
- BUT we have observed trends
- We can't use all the data

- Climatology is stationary
- BUT we have observed trends
- We can't use all the data

- Climatology is stationary
- BUT we have observed trends
- We can't use all the data

- Climatology is stationary
- BUT we have observed trends
- We can't use all the data

- Climatology is stationary
- BUT we have observed trends
- We can't use all the data

Proposed solution

- Modify forecast methodology
- Bayesian Joint Probability
- Bayesian inference
- Note: Additional uncertainty

$$\begin{split} \theta &= \{\mu, \Sigma\} & \theta &= \{\mu, \sigma^2, \alpha\} \\ y' &\sim N(\mu, \Sigma) & y'(t) \sim N(\mu + \alpha(t - t_m), \sigma^2) \\ p(\theta | D) &\propto p(\theta) p(D | \theta) &= p(\theta) \prod_{t=1}^n p(D_t | \theta) \end{split}$$

Initial results

- Average skill of 3%
- Median skill of 0%
- Varies by month
 - Mar: -1%
 - May: = +14%

- When should we apply nonstationary climatology?
- What predictors can we use?
 - Climate region?
 - Water year?
 - Catchment area?
 - Mean or CV?
 - ...
- When there is a significant trend?

	Include	Exclude
Better	True positive	False negative
Worse	False positive	True negative

- When should we apply nonstationary climatology?
- What predictors can we use?
 - Climate region?
 - Water year?
 - Catchment area?
 - Mean or CV?
 - ...
- When there is a significant trend?

- When should we apply nonstationary climatology?
- What predictors can we use?
 - Climate region?
 - Water year?
 - Catchment area?
 - Mean or CV?
 - ...
- When there is a significant trend?

- When should we apply nonstationary climatology?
- What predictors can we use?
 - Climate region?
 - Water year?
 - Catchment area?
 - Mean or CV?
 - ...
- When there is a significant trend?

- When should we apply nonstationary climatology?
- What predictors can we use?
 - Climate region?
 - Water year?
 - Catchment area?
 - Mean or CV?
 - ...
- When there is a significant trend?

	Include	Exclude
Better	True positive	False negative
Worse	False positive	True negative

- When should we apply nonstationary climatology?
- What predictors can we use?
 - Climate region?
 - Water year?
 - Catchment area?
 - Mean or CV?
 - ...
- When there is a significant trend?

	Include	Exclude
Better	True positive	False negative
Worse	False positive	True negative

CRPSS where at least one year had trend

Conclusion

- Long-term trends can lead to large skill in some cases.
- Is important to identify when to apply the method.
- Don't use for wettest months.
- Use for significant trends ($\alpha = 0.50$)

Tristan.Graham@unimelb.edu.au