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* Tropical Cyclones (TCs) lead to several hazards that cause significant impacts

 Qver the past 50 years, TC-related disasters killed >779k people and caused US$ 1408 billion in economic
losses - an average of 43 deaths and US$ 78 million in damages every day (WMO, 2020)

The use of TC rainfall and flood forecasts for
anticipatory action is hampered by forecast skill,
as errors are large for decision-making and limit
the actionable lead times

Can we improve the skill of forecasts of TC
rainfall, both severity and location, via
Machine Learning (ML)?

Flooded Houses in Buzi, Mozambique, after Cyclone Idai’s landfall,
18 March 2019 (Credits: INGC, FATHUM)
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Observations:

» IBTrACS: global TC tracks, with >73k time steps between 1996 and 2020 (resampled at 6h)
» Multi-source observational dataset (MSWEP) as precipitation ground truth

o Temporal resolution: 3h

o Spatial resolution: 0.1°

o Period: 1980-present

Forecasts:

» S2S precipitation (P) forecasts by ECMWEF (results for now only for ENS control member)
o Temporal resolution: 6h
o Spatial resolution: 0.125°
o Period: 20 years hindcasts, twice weekly from 2016 to 2023 (first hindcast year: 1996)

Reanalysis:

» ERAS precipitation reanalysis (used to set up the methodology, results not shown here)
o Temporal resolution: 1h
o Spatial resolution: 0.25°
o Period: 1979-present



METHODS: DEEP LEARNING
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* We post-process precipitation (P) forecasts based on a deep-learning algorithm (ARU-Net) to adjust
both local biases and spatial distribution of rainfall

 We train the model on a large sample from global TC events, using a multi-source observational
dataset (MSWEP) as ground truth

« We use a composite loss function to train the model, based on the combination of Mean Squared
Error (MSE) and Fractions Skill Score (FSS)

ECMWEF forecast (S2S) / ERA5
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METHODS: SPATIAL ACCURACY SCORE
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* We adapted the Fractions Skill Score, FSS (Roberts and Lean, 2007) to be used as loss function (replaced
hard threshold with tanh, then Gauss filter and normalised to range [0, 1])

* FSS takes values between 0 (no match) and 1 (perfect match) - our modified FSS is inverted

* Two key parameters: Q (intensity threshold) and N (patch size)
* We selected Q = [80th, 95th, 99th] percentile & N=15 grid cells
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* For forecast evaluation, we use action-relevant scores for humanitarians, False Alarm Ratios & Hit
Rates (target levels: FAR < 0.5 & HR>0.5), modified using an effective action scale

* Action scale: effective spatial scale of a warning to trigger useful actions based on the level of
‘acceptable’ forecast error in the Mozambique Red Cross’ Early Action Protocol (EAP) for TCs
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RESULTS: BIAS AND SPATIAL ACCURACY
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* Results were analyzed both over training + validation and test sets

 The ML-based model improves substantially overall rainfall biases and spatial accuracy

MSE [(mm/6h)”2] - training + validation
Lead time Original 525 Improved
forecast forecast
1 day 28.68 25.20
3 days 42.42 31.56
5 days 52.25 36.12

FSS' - Modified Fractions Skill Score [-]

Spatial accuracy (FSS’) - training + validation

original forecast (o) vs. improved forecast (+)
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* False Alarm Ratios (FAR) increase with lead time and with rainfall intensity

 Marked improvement in skill for early action by enlarging the action scale from 50 to 100 km
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RESULTS: FAR (ADJUSTED S2S, TEST SET)

FAR [-]
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Our ML-based post-processing reduces substantially false alarms, at lead times >= 3 days

Our ML adjustments can bring skill closer to (or satisfy) target levels (FAR<0.5) for higher thresholds
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Hit Rates (HR) decrease with lead time and with rainfall intensity

Marked improvement in skill for early action by enlarging the action scale from 50 to 100 km
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* The ML-based post-processing increases substantially Hit Rates (HR) at lead times >= 3 days

* Our ML adjustments bring forecast skill closer to/above target levels (HR>0.5) for higher thresholds at 5
days lead time
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Takeaways

 We proposed a ML-based post-processing model (ARU-Net) that improves substantially the spatial
accuracy and skill of medium-range rainfall forecasts (1-5 days Lead Times)

* Forecast skill varies substantially with the action scale and rainfall intensity threshold
* Our ML post-processing makes TC rainfall forecasts (at 3-5d LT) more skillful for early action

Next steps

* Lead Time extension: extending the tests beyond 5 days, up to 15 days (ongoing)
 Ensemble:
(i) test the model over the whole S2S Ensemble, using ARU-Net trained on the control
member & validating over all ENS members (or retraining for ENS over shorter period)

(ii) evaluate the action-relevant scores for different trigger probabilities, and the spread-error
relationship
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