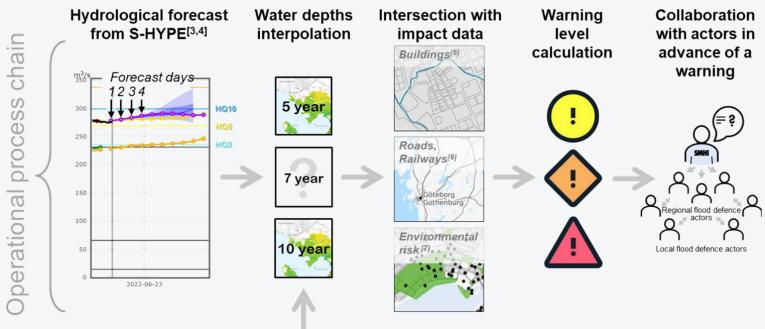

HEPEX WORKSHOP 2023 FORECASTING ACROSS SPATIAL SCALES AND TIME HORIZONS

IMPACT-BASED FLOOD WARNINGS IN SWEDEN USING A FLOOD INUNDATION MAP LIBRARY APPROACH BLESSING OR CURSE?


Richard Alpfjord Wylde, <u>Nina Bosshard</u> | <u>nina.bosshard@smhi.se</u>, Disa Ekholm, Marc Girons, Clara Greve-Villaro, Fredrik Schück

SMHI issues warnings for flooding as a consequence of...

Pre-compiling of a Flood inundation map library using LISFLOOD-FP^[1] and GRASS-GIS^[2]

with return periods 2, 5, 10, 25, 50 and 100 years

^[1] Bates, P.D. & De Roo, A.P.J. 2000. A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1–2): 54–77.

12] Neteler, M., Bowman, M.H., Landa, M. & Metz, M., 2012. GRASS GIS: A multi-purpose open source GIS. Environmental Modelling & Software, 31: 124–130.

^[3]Lindström, G. 2010. Development and test of the HYPE (Hydrological Predictions for the Environment) model – A water quality model for different spatial scales. Hydrology Research, 41(3–4): 295–319.

^[4] Strömqvist, J., Arheimer, B., Dahné, J., Donnelly, C. & Lindström, G. 2012. Water and nutrient predictions in ungauged basins: set-up and evaluation of a model at the national scale, Hydrological Sciences Journal, 57:2, 229-247.

^[5]Lantmäteriet. https://www.lantmateriet.se/en/geodata/geodata-portal/ (several data layers, e.g. buildings, water courses, DEM).

^{i]} Trafikverket. https://bransch.trafikverket.se/ (several data layers: roads, railways, bridges)

^[7] Swedish county administrative boards. EBH-kartan, https://ext-geoportal.lansstyrelsen.se/standard/?appid=ed0d3fde3cc9479f9688c2b2969fd38c (open source, in Swedish).

13.500 sub-catchments with an upstream area >50 km² and an average size of 8 km² are simulated

Spatial resolution is 5 m for the river models, but was locally increased to 1 m in lake models to better reflect dam structures

~10 000 <u>river catchments</u> are modelled with a **coupled 1D-2D hydraulic flood model**

(80% running, 30% with good quality)

~3500 <u>lake catchments</u> are modelled with a **simplified GIS-interpolation model**

(65% running, quality assessed but not calibrated)

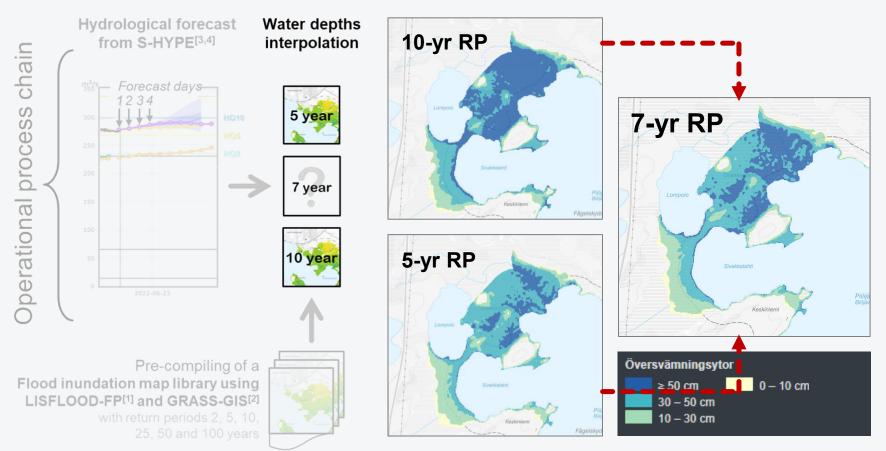
Pre-compiling of a Flood inundation map library using LISFLOOD-FP^[1] and GRASS-GIS^[2] with return periods 2, 5, 10, 25, 50 and 100 years

10.000 working models * 6 RP = 60.000 inundation maps

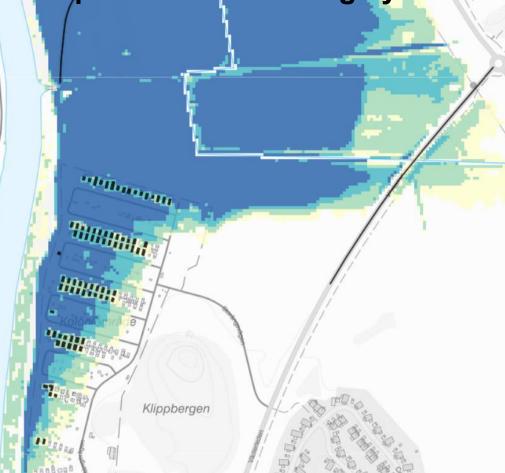
Hydrological forecast from S-HYPE^[3,4] chain Forecast davs-234 perational process **HQ10** 250 200 150 100 50 2022-06-23

Pre-compiling of a Flood inundation map library using LISFLOOD-FP^[1] and GRASS-GIS^[2] with return periods 2, 5, 10, 25, 50 and 100 years

Start of the operational part of the workflow

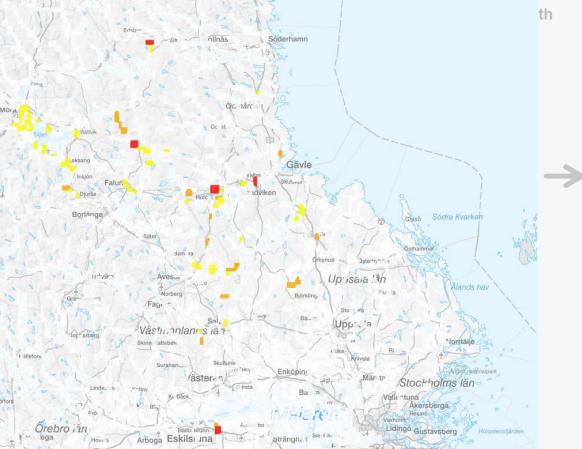

S-HYPE: hydrological model used in the forecasting service

Lumped (subbasins)


SLC, Soil and Landcover Classes (HRU concept)

Daily temporal resolution

Example from forecasting system



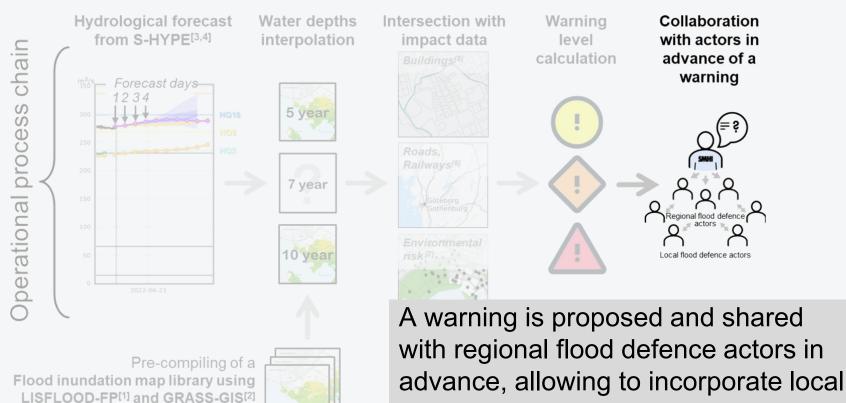
Overlay of operationally computed inundated area with impact layers

- → Affected objects are highlighted
- → Areas without impacts are not highlighted

Bottenhavet

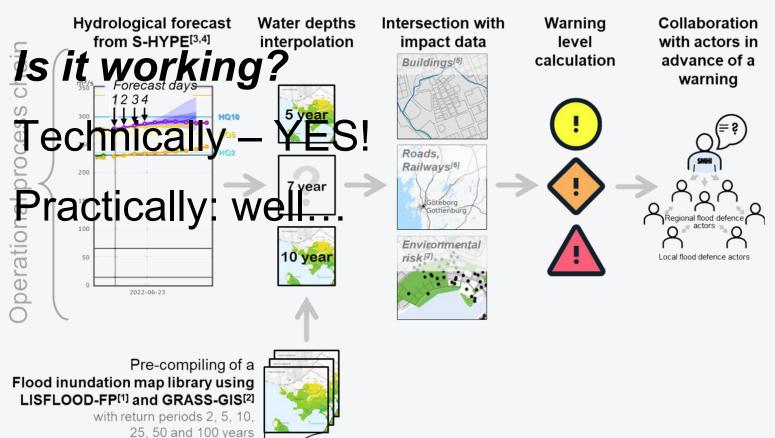
Example from forecasting system

Warning level calculation



E.g. a certain number of houses flooded, length of affected infrastructure, ...

SMHI


Derived for smaller, defined warnings areas

knowledge into the warning.

Impact-based flood warnings – both a blessing and a curse

We are operationally and at a high spatial resolution

- 3
- » computing flood inundation extent
 » over vast areas in Sweden
 » on a daily basis.

Currently, numerous limitations negatively affect

- » the quality of the modelling results leading to
- » a high manual workload that cannot be handled in situations where it's most needed.

What's next? (apart from improving models)

- » Adjust criteria: more severe consequences (e.g. more houses affected)
- » Generalize information: for the public (both visually and content-wise/text)
- » Streamline internal workflows: more rigourous
- » Simplify procedure: to notify regional actors (automatisation? no quick fix...)
- » Overall aim: boil down the vast amount of available data to useful pieces of information (user-specific!)

WANT TO SHARE YOUR EXPERIENCE OR IDEAS?

We're curious - let's discuss!