



# Trends and uncertainty in long inflow predictions & for hydropower management David Horsley<sup>1</sup>, James Bennett<sup>2</sup>, Andrew Schepen<sup>2</sup>, and David Robertson<sup>2</sup>

## Hydro Tasmania

Connectioned to National Electricity Market



CARTHTON Storages 1 hour + DEVONPOR' 3 years NCESTO Richene QUEENST UONVILLE 120 km

30 hydropower stations and catchments

Rainfall driven (no snowpack)

Stochastic optimisation for long term water value



# **The Problem**

Need long term stochastic inflow series at 30 sites

## **Current approach ('Allie Method')**

Random resampling of post-1996 inflows

- Spatial correlation preserved
- No autocorrelation
- No trend



The solution: Trend and Hydro Uncertainty in Long Inflow  $\mathbf{q}(t) = \begin{bmatrix} q_1(t) \\ q_2(t) \\ \vdots \\ q_N(t) \end{bmatrix} \sim \mathbf{\overline{mvsash}}(\boldsymbol{\mu}(t), \boldsymbol{\sigma}(t), \boldsymbol{\epsilon}(t), \boldsymbol{\delta}(t), \boldsymbol{\Sigma})$ tocation scale skew shape covariance skew shape Fourier series (seasonality) **Rev Thomas Bayes**  $\mu_i(t_j) = \mu_{i,0}(t_j) + (k_i(t_j) q_i(t_{j-1})) + \sum_{m=1}^{M} \mu_{i,m,0}(t) \sin(2\pi m t_j) + \mu_{i,m,1}(t) \cos(2\pi m t_j)$ Autoregressive term Trend in Fourier coefficients  $\mu_{i,m,n}(t) = \mu_{i,m,n,0} + \mu_{i,m,n,1}t$ + partial (spatial) pooling with Gaussian Process prior



## Inputs

Inflows to Power Stations Historical *net* inflows **derived** observations from monthly water balance model

net local pickup = Δvolume + outflows - controlled inflows

30 good quality sites post-1991

Australian Landscape Water Balance model (AWRA-L) evaporation + simple evaporation model to derive gross inflow

**Streamflow gauge network** 25 natural flow sites with long record. Several with 100 years of near continuous record



# Simulations – Better extremes







2.5

# **Marginal distributions**











**Autocorrelation** 











# Reliability – Lake Meadowbank annual accumulations







Allie Method



## **Drought – 2-year inflow minima**







## **Trends**

#### Gauge sites



Observations
Ensemble member
Ensemble 98% HDI

## Longer record sites inform shorter



Further work

### Climate-model-informed trend



## Thank you!

#### Dr David Horsley Hydro Tasmania David.Horsley@hydro.com.au

Dr James Bennett CSIRO Environment james.bennett@csiro.au https://people.csiro.au/B/J/James-Bennett



## **Supplemental slides**



# Marginal distributions – seasonal data 🎂 🎦 Tasmania











## **Spatial correlation**













## **Spatial correlated parameters**



## Crotty



Observations
Ensemble member
Ensemble 98% HDI

Pre dam

Post dam