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Gap, Motivation

Sub-seasonal to seasonal (S2S) climate prediction is fundamental to

myriad, diverse applications across many sectors.

* the ability to predict climate beyond weather scales (2 weeks to 9 months) can
inform water, energy, agriculture, terrestrial and aquatic ecosystems,
infrastructure development, shipping and navigation, ...

There is no coherent source of guidance on the ‘latest and greatest’ S2S

climate information for any particular application

* stakeholders with particular S2S climate needs

* S2S forecast developers (such as CGD) seeking a benchmark for their own
modeling capabilities

Some raw model forecast skill assessments exist (in literature, on
provider websites)

* default grids, default predictands

* not comprehensively intercomparable

* lacking breadth: e.g., only dynamical, only raw (no post-processing)




Example needs from current projects
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Example needs from current projects

Columbia River system management
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Example needs from current projects

Sacramento River system management

* Reclamation releases and use of cold water storage is determined by
S2S stream temperature predictions from March to November
* Current approach: tercile forecasts of temperature + conditional

resampling of met. inputs to a stream temperature model
* It has marginal skill in the first month only
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Testbed concept to serve multiple projects over time

A testbed should merge cross-cutting expertise dynamical forecasts empirical forecasts
* climate forecast development
* data-driven post-processing
* stakeholder applications
* geospatial data analysis
* interactive visualization
It should include
* stakeholder predictands & engagement "
* broad intercomparison & benchmarking ﬂ a
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Strategy for S2S climate forecast use

Hydrologic prediction needs seamless forecast meteorology
* short (to medium) range weather forecasts
* sub-seasonal (eg weeks 2-4)
e seasonal (months 2+) climate signals

(1) Handle weather scale prediction relatively directly
* bias-corrected direct output from NWP

(2) Handle climate-scale prediction indirectly
* climate-forecast conditioned weather generation

Pros & cons for different sequencing
* optimal predictability varies, but expediency matters

WX climate climate
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Examples of testbed S2S climate forecast investigation

Individual model skill evaluations

* Example: one dynamical model
(GFDL) from NMME

* From various sources, we have not
found a great solution for months 2/3
precipitation or air temperature (or
month 2)

Note: have yet to add ECWMF’s
forecasts to testbed

NMME Hindcast Evaluation (1982-2010) of Months 2-3 Airtemp
HUC4 ACC for Initialization Month: 1, Model: GFDL-CM2p1l-aer04
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Examples of testbed S2S climate forecast investigation

Comparative dynamical model skill evaluations

* Weeks 2-4 temperature
and precipitation

* We looked mainly at the
Sub-X models
(dynamical sub-
seasonal forecasting)

* To date, the NCEP
Global Ensemble
Forecast System
(GEFS) provides the
highest skill
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Example: comparing empirical, dynamical predictions, some post-processing

® Simple empirical predictions NMME Hindcast Evaluation vs. Nino 3.4: PNW HUC04 Domain (n = 12)
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Assessing post-processing methods (ML)

Exploring ML-based
post-processing (hybrid
forecasts)

* e.g., XCast

* Used in IRl calibrated
products

* Took 3™ place in Al/S2S
Challenge

* We're collaborating with
the XCast developer at
NOAA/ESRL

e Other ML
tools/packages are of
interest

XCast

1. About

2. Installing XCast
3. Data in XCast

4. Citing XCast
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Welcome

XCast is a Python Climate Forecasting toolkit - a set of flexible functions and classes that let you
implement any forecasting workflow you can think of. It uses Xarray and Dask Parallelism to apply
statistical and machine learning methods to any kind of gridded climate data quickly and efficiently.

Our goal is to lower the barriers to entry to innovation in climate and weather forecasting by bridging
the gap between Python's gridded data utilities (Xarray, NetCDF4, etc) and its data science utilities
(Scikit-Learn, Scipy, OpenCV). While XCast focuses on newer experimental techniques like quantile
regression forest and extreme learning machine, it also implements many industry standard
preprocessing methods and forecasting technigues from ensemble averaging to extended logistic
regression. If there's something you feel is missing from XCast, have no fear- XCast is designed to be
easily extensible (see BaseEstimator and @metric).



The challenge of small samples and skill metric uncertainty
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Interactive visualization
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To support multiple forecast projects that need S2S climate predictions, we’ve created a
testbed focusing on basin-level climate forecast skill

The testbed shares a common infrastructure for evaluating dynamical, empirical, and
hybrid predictions — including ML approaches

We're assessing different convenient predictand periods
 week 2, weeks 2-3, weeks 2-4, months 2, 3, ..., months 2-3, season 1, 2, 3 ...

The testbed should help to benchmark new, individual efforts as they appear

Funding and collaboration is currently somewhat ad hoc — support is from several different
projects versus one dedicated coherent whole

Estimating skill based on small samples and short records requires caution
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