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Hybrid seasonal flood prediction

We use a hybrid approach to predict
monthly Q

max

These differ from both dynamical
and data-driven predictions

We use a hybrid approach whereby
dynamical climate predictions are
supplied to a quantile regression
forest (QRF) ML algorithm
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Hybrid seasonal flood  rorecast setup:
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Multi-site model
outperforms single-site
models

Our QRF model is trained across
all catchments and months at
once

To benefit from this approach we
need to include static catchment
attributes

The resulting model PT _attr
outperforms single-site models
fitted separately for each
catchment
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Model tends to underestimate
extreme values of Q.
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Next steps

Comparison with EFAS/GIoFAS

Use sub-monthly climate inputs (e.g.
weekly)

Explore why certain models perform
better in certain catchments

Include remote drivers in models

Ensemble selection to discard less
skillful members

Develop a global model
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