Seasonal to decadal flood forecasts for UK using a hybrid (AI - large climate model ensemble) approach

Simon Moulds^{1,2}, Louise Slater¹

- (1) School of Geography and the Environment, University of Oxford, UK
- (2) School of GeoSciences, University of Edinburgh, UK

simon.moulds@ed.ac.uk @simmoulds

Hybrid seasonal flood prediction

We use a hybrid approach to predict monthly $\ensuremath{\mathsf{Q}_{\text{max}}}$

These differ from both dynamical and data-driven predictions

We use a hybrid approach whereby dynamical climate predictions are supplied to a quantile regression forest (QRF) ML algorithm

Slater et al. (2023) HESS

Hybrid seasonal flood prediction

Monthly precipitation and temperature from the C3S multimodel ensemble

Antecedent streamflow and precipitation

Static catchment attributes from CAMELS-GB

How should we build a hybrid seasonal flood forecasting system?

Forecast setup:

Forward-chain cross-validation

Multi-site model outperforms single-site models

Our QRF model is trained across all catchments and months at once

To benefit from this approach we need to include static catchment attributes

The resulting model *PT_attr* outperforms single-site models fitted separately for each catchment

Including antecedent conditions adds skill

Implicitly accounted for by physicsbased models

We compare antecedent streamflow (*antQ*) and antecedent precipitation (*antP*)

At short lead times models with antQ outperform those without

As lead time *increases* the number of stations including *antQ decreases*

Skill varies seasonally

Skillful predictions across all seasons for lead time 0

In DJF >75% catchments are skillful in lead time 1 (i.e. 4-8 weeks from initialization)

Model tends to underestimate extreme values of \mathbf{Q}_{\max}

Higher correlation at shorter lead times

More extreme values of observed \mathbf{Q}_{\max} tend to be underestimated

This is more pronounced at longer lead times

Lead time

• 0 • 1 • 2 • 3

Next steps

Comparison with EFAS/GloFAS

Use sub-monthly climate inputs (e.g. weekly)

Explore why certain models perform better in certain catchments

Include remote drivers in models

Ensemble selection to discard less skillful members

Develop a global model

simon.moulds@ed.ac.uk @simmoulds

