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Abstract

Hydrologic models are twofold: models for understanding physical processes and models for prediction. This study addresses the
latter, which modelers use to predict, for example, streamflow at some future time given knowledge of the current state of the system
and model parameters. In this respect, good estimates of the parameters and state variables are needed to enable the model to gen-
eraie accurate forecasts. In this paper, a dual state-parameter estimation approach is presented based on the Ensemble Kalman Fil-
ter (EnKF) for sequential estimation of both parameters and state variables of a hydrologic model. A systematic approach for
identification of the perturbation factors used for ensemble generation and for selection of ensemble size is discussed. The dual
EnKF methodology introduces a number of novel features: (1) both model states and parameters can be estimated simultaneously;
(2) the algorithm is recursive and therefore does not require storage of all past information, as is the case in the batch calibration
procedures; and (3) the various sources of uncertainties can be properly addressed, including input, output, and parameter uncer-
tainties. The applicability and usefulness of the dual EnKF approach for ensemble streamflow forecasting is demonstrated using a
conceptual rainfall-runoff model
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Streamflow forecasting; Stochastic processes; Data assimilation; Ensemble Kalman filter; Dual estimation; Kernel smoothing

Journal of Hydrology 568 (2019) 758-768

Conrents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

ELSEVIER

=

IIT Bombay

Research papers

Identifying time-varying hydrological model parameters to improve
simulation efficiency by the ensemble Kalman filter: A joint assimilation of
streamflow and actual evapotranspiration

Mengsi Xiong™®, Pan Liu™™, Lei Cheng™®, Chao Deng®, Ziling Gui*®, Xiaojing Zhang™®,
Yanghe Lin™®

“ State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 420072, China

v Hubei Provircial Collaborative Ianovation Center for Water Resources Security. Wuhan 420072, China

“ State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Hoha University, Nanjing 210098, China
4 College of Water Resources md Hydrology, Hoha Untversity, Namjing 210098, China

1. Introduction

Hydrological model parameters play a critical role in model simu-
lation. It is generally assumed that model parameters calibrated by
limited data will be applicable in the future. In other words, the para-
meters of hydrological models are treated as constants while model
inputs are vary over time. However, this assumption may lead to large
errors in simulated streamflow owing to climatic temporal variations
and human activities. There is an increasing awareness of the need to
consider model parameters as continuously time-varying (Brigode
et al., 201 3; Thirel et al., 2015; Patil and Stieglitz, 2015). On one hand,
model parameters may potentially vary with climatic temporal varia-
tions because calibrated parameters are supposed to compensate for
model structure and observation data problems (Wagener et al.. 2003:
Merz et al., 2011). On the other hand, human activities, such as the
construction of water conservancy projects and urbanization, could
result in underlying surface changes, which also:may change model
parameters because some parameters represent transient catchment
characteristics (Legesse et al., 2003; Brown et al., 2005). Hence, it is of
paramount importance to study the time-variability of hydrological
model parameters.
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1. Introduction

As the number of observations being assimilated to produce me- rreraeralalia enans JESSEOIN 1 @, RAAL R karan' @, T. L. Eldho' @, and §. Lakshmivarahan'2 ©
teorological forecasts has grown almost exponentially over the :

— . Key Points: 'Department of Civil Engincering, Indian Institute of Technology, Bombay, Mumbai, India, *School of Computer Sciences,
years, the data assimilation process has become more and more o The poscatial of sssimilating oaly University of Oklahoma, Norman, OK. USA
complex and expensive. It is important to evaluate the impact
of all these observations, to assess the cost effectiveness of col- With new satellite missions being launched, the amount of data is expected to increase by orders of magnitude.
lecting and assimilating them, and to assess the ability of the In such a scenario, the FSM based strategy would play a vital role in the optimal selection of appropriate obser-
data assimilation system to use these observations effectively. vations during the assimilation process and the researchers can gain insight on when and what to assimilate with
One technique to evaluate the value of observations is by way of the reduced computational burden. Although the current work identified and effectively assimilated sensitive
observing system experiments (OSE), but they tend to be very observations in the time domain, further research is needed to extend this work by including spatial heterogeneity
expensive because they can be performed for only one subset of using distributed hydrological models to identify spatially sensitive locations. Once identified, the observations
observations at a time. Ensemble techniques have also been ap- from only these sensitive locations can be leveraged to enhance assimilation efficiency, especially in regions
plied to assess the potential impact of future observing system, where data availability remains a challenge.

for example by Tan et al. (2007). This technique also has the dis-
advantage of cost since an ensemble of data assimilation systems
is required. Both techniques have the disadvantage that modify-

ing the observation system can change the value of remaining SO I Utl O n . FI rSt-O rde r derlvatlve
observations. For these reasons, these techniques cannot be used a M ( t) a Q (t)

routinely in operational systems. l e
axX() ~ aSM(t)
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Figure 1: The flowchart of the study framework.
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Study Area:
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Figure 2: Geographical location map of the Bharathapuzha river basin (BRB) along with the depiction of stream networks,
ASCAT observation grids, and streamflow gauging stations.
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Univariate SM and Q Assimilation (SC | and 2):

Table 1: Performance statistics of the soil moisture, and streamflow estimation during the open-loop, SMDA, and QDA scenarios.

IIT Bombay

Type of RMSE | PBIAS | KGE R? RMSE PBIAS | KGE R? EFF
assimilation (mm) (%) (-) (-) (Cumecs) (%) (-) (-) (-)
Average Soil Moisture

oL 304 603 | 029 0.5
| svba YR 192 -6.56 077 0.6l
SC 2a 316 31.16 05  0.54
SC 2b 295 128 056  0.53
SC 2¢ 29.1 319 | 05  0.53

158.6
156.6
147.7
157.5
145.9

Both SMDA and QDA improved the model performance.

However, MVDA (SC 3) improved the model much better than any of the UVDA.

Streamflow at Outlet

-28.89
10.72
-44.6

-45.52

-27.97

0.68
0.72
0.76
0.72
0.75

0.76
0.78
0.79
0.82
0.84

0.16

0.18

0.18
0.2

Table 2: Performance statistics of the soil moisture, and streamflow estimation during the MVDA, TV-MVDA, and Sens-TVMDA scenarios.

Type of RMSE | PBIAS | KGE | R? RMSE PBIAS | KGE | R? EFF
assimilation (mm) (%) ) () | (Cumecs) (%) ) ¢) )

Average Soil Moisture

MVDA SC3 24 32.5 0.53 0.58
TV-MVDA SC 4 22.4 21.2 0.64 0.61
Sens-TV-
SC5 25 31.4 0.52 0.53
MVDA

121.3
119.4

129.1

Streamflow at Outlet

-8.66
-8.28

-18.3

0.86
0.87

0.86

0.83
0.84

0.83

0.41
0.42

0.4
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Streamflow Estimates and Forecast during MVDA (SC 3 and 4):
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Effect of making the parameters
dynamic (SC 4) did not improve the
model performance as compared to SC 3

However, it constrained the model well
during low flows during non-monsoon
period
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Time (Days)
Figure 3: Time series plot showing the streamflow at the BRB
outlet (Kumbidi) during open-loop, MVDA, TV-MVDA, and Sens-
TV-MVDA scenarios
2000
TV-MVDA (SC 4) showed the .
best result suggesting that the =
updating the model parameters |2
periodically captured the g 1000
transient nature of the £
catchment. 2 500
Figure 4: Time series plot showing the streamflow forecast during
open-loop, MVDA, TV-MVDA, and Sens-TV-MVDA scenarios.
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Sensitivity-based MV Assimilation (SC 5):

Grids that are spatially closer
to catchment outlet are more
sensitive 1n nature.

Sensitivity-based TV-MVDA
(SC 5) showed a similar result
as compared to TV-MVDA (SC
4). However, it used less than
30% of SM observations
across the basin to achieve
these results.

Major Contribution:

Reduced the computational
burden by more than 60%.

R Sensitive observations

wad

Kilometers
0 10 20 40 60 80 100

L d o [ 408 (227%) [ 565 (25.7%) [ | 594 (27.1%)
egen [ ] s272a%) [ ] 512(23.3%) [0 572 (26.1%) [B 595 (27.1%)

Figure 5: Spatial plot showing the % of SM observations used for the assimilation purpose during the
Sens-TV-MVDA scenario
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Effect of Perturbing the Input Forcings:

1) 8, has more impact on the model error covariance than Spgyp

IIT Bombay

2) At higher perturbation values, TPM started behaving randomly showing poor

model results.
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Figure 6: Scatter plot showing the variations in the model performance for different perturbations applied to the

precipitation (8P) and potential evapotranspiration data (6PET) .



