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HEPEX Workshop, Norrköping, 2023



Motivation: Forecast value for hydropower production

• Spring and summer snow melt runoff winter energy
demand

• HP producers store snow melt in large reservoirs for next
winter production

• Seasonal, short-term runoff
forecasts during winter/spring to
update production planning

• Reservoirs must be filled by end
of summer!

• Use as much water as possible
for production during the current
spring/summer!

• Avoid release of water from
reservoirs that cannot be used
for production (spill)



Previous data assimilation (DA) studies
Musuuza et a., (2020), Remote Sensing. doi:doi:10.3390/rs12050811

Product Provider Coverage Sp. Res. Availability Frequency

Snow Water Equiv. ESA CCI Global 12.5 km 1979-2019 Daily
Actual ET NASA MODIS Global 500 m 2001-2021 8-day agg.
Potential ET NASA MODIS Global 500 m 2001-2021 8-day agg.
Frac. Snow Cover CRYOLAND Europe 500 m 2000-2020 Daily
Discharge? SMHI Sweden - 1900-2020 Daily
Reservoir inflows? VRF Sweden - 1961-2019 Daily

? in situ observations

• River Umeälven, Sweden

• Area: 26000 km2

• Snowmelt-dominated

• Unregulated Vindeälven tributary (4 Q stations)

• Managed lower Umeälven tributary (3 Q stn.)

• Nine reservoir inflow regions



Previous data assimilation (DA) studies Musuuza et al. (2020)
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• Information content:
gains for Qob, INFLOW

• Selection depends on
target variable(s)

• Gain depends on
assimilated data and
month

Unanswered question: does DA play a role in streamflow forecasts?



Motivation: Forecasting service chain

Forecast Time horizons
Weather 0-14 days
Subseasonal 1-12 weeks
Seasonal 1-12 months
Interannual 1-10 years
Climate decades-centuries

• Main skill sources: Initial
Hydrological Conditions (IHC),
Meteorological Forcing (MF)

• Skill generally falls with lead
time

• Skill depends on choice of
benchmark



The diagnostic framework to detect sources of skill

Published in Musuuza et al. (2023), WRR. doi:10.1029/2022WR033655

Historical Streamflow
observations

Observed streamflow
climatology

No forcings

No initial conditions

Historical meteorological
observations/reanalysis

Hydrological model

Simulated streamflow
climatology

Climatology-based
forcings

No initial conditions

Ensemble Streamflow
Predictions (ESP)

Climatology-based
forcings

Initialized with P/T
climatology

Ensemble Streamflow
Predictions (ESP)

with data assimilation

Climatology-based
forcings

Initialized through
data assimilation

GCM-based seasonal
meteorological forecasts

Hydrological model

GCM-based
streamflow forecasts

GCM-based forcings

Initialized with P/T
climatology

GCM-based
streamflow forecasts
with data assimilation

GCM-based
forcings

Initialized through
data assimilation

Earth observations

and in situ data

The systems are colored accordingly for assessing:

(i) GCM-based streamflow forecast
performance (benchmarking)

(ii) Gain of GCM-based streamflow forecasts
from data assimilation

(iii) Relative influence of data assimilation and
GCM-based forcings.



The experiment: questions (Musuuza et al. (2023))

1. Seasonal Forecast (SF) quality in relation to lead time

2. Value and persistence of Data Assimilation (DA) in seasonal streamflow
forecasts

3. Relative importance of DA and Meteorological Forcing (MF) in SF
1

SEAS5+noDA

SEAS5+DA ESP+noDA

(i)

(ii)
(iii)

DA GCM-based
MF

GCM-based MF+DA



The experiment: methodology (Musuuza et al. (2023))

1. Reference meteorological forcing: HydroGFD v2

2. Dynamic seasonal forecasting: ECMWF SEAS5 (bias-adjusted), ESP

3. Model initialization: 1st of every month, weekly aggregations

4. Forecast horizon: 7 months ahead

5. Performance metric: Continuous Ranked Probability Score (CRPS)

6. Skill metric: Continuous Ranked Probability Skill Score (CRPSS)

CRPS: optimum 0 CRPSS: optimum 1



Results 1: The quality of seasonal forecasts
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Forecast sys: SEAS5+noDA, BM: observed climatology
Generally high skill for all initialization months
May-Jul initialization skills lower large Q measurement errors? model process
representation?



Results 2a: The value of data assimilation
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Forecast sys: SEAS5+DA; BM: SEAS5+noDA
Highest skill in Winter and Spring
Large spreads in spring and summer values: Q flood measurement errors?



Results 2b: The persistence of data assimilation
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Different between assimilations and seasons
Persistence longest in winter and shortest in summer
Short summer values: snow depletion, Q errors?



Results 3: Relative importance of DA
FSC SWE QOB INFLOW COMBI AET PET SEAS5 VS ESP
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Conclusions

1. The assimilation of EO datasets generally improves the initial
hydrological conditions and hence the forecasts at short lead times
(lead-week 0). However, the added value from EO assimilation depends
on the assimilated variable and the season.

2. The impact of data assimilation (in terms of persistence) varies between
the variables and seasons. In particular, FSC, AET and reservoir inflow
have the longest persistence during spring

3. Overall, the data assimilation (hence the improvements in initial
hydrological conditions) have higher impact on seasonal streamflow
forecasts than the meteorological forcing.
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