The role of earth observations and in situ data assimilation in seasonal hydrological forecasting doi:10.1029/2022WR033655

Jude L. Musuuza¹ Louise Crochemore² Ilias Pechlivanidis¹

¹SMHI, Norrköping, Sweden ²Université Grenoble Alpes, Grenoble, France

HEPEX Workshop, Norrköping, 2023

Motivation: Forecast value for hydropower production

Spring and summer snow melt runoff winter energy demand

 HP producers store snow melt in large reservoirs for next winter production

- Seasonal, short-term runoff forecasts during winter/spring to update production planning
- Reservoirs must be filled by end of summer!
- Use as much water as possible for production during the current spring/summer!
- Avoid release of water from reservoirs that cannot be used for production (spill)

Previous data assimilation (DA) studies

Musuuza et a., (2020), Remote Sensing. doi:doi:10.3390/rs12050811

Product	Provider	Coverage	Sp. Res.	Availability	Frequency
Snow Water Equiv.	ESA CCI	Global	12.5 km	1979-2019	Daily
Actual ET	NASA MODIS	Global	500 m	2001-2021	8-day agg.
Potential ET	NASA MODIS	Global	500 m	2001-2021	8-day agg.
Frac. Snow Cover	CRYOLAND	Europe	500 m	2000-2020	Daily
Discharge*	SMHI	Sweden	-	1900-2020	Daily
Reservoir inflows*	VRF	Sweden	-	1961-2019	Daily

* in situ observations

- River Umeälven, Sweden
- Area: 26000 km²
- Snowmelt-dominated
- Unregulated Vindeälven tributary (4 Q stations)
- Managed lower Umeälven tributary (3 Q stn.)
- Nine reservoir inflow regions

Previous data assimilation (DA) studies Musuuza et al. (2020)

RIVER DISCHARGE

Unanswered question: does DA play a role in streamflow forecasts?

Motivation: Forecasting service chain

Forecast Time horizons

Weather	0-14 days		
Subseasonal	1-12 weeks		
Seasonal	1-12 months		
Interannual	1-10 years		
Climate	decades-centuries		

- Main skill sources: Initial Hydrological Conditions (IHC), Meteorological Forcing (MF)
- Skill generally falls with lead time
- Skill depends on choice of benchmark

The diagnostic framework to detect sources of skill

The experiment: questions (Musuuza et al. (2023))

- 1. Seasonal Forecast (SF) quality in relation to lead time
- 2. Value and persistence of Data Assimilation (DA) in seasonal streamflow forecasts
- 3. Relative importance of DA and Meteorological Forcing (MF) in SF

The experiment: methodology (Musuuza et al. (2023))

- 1. Reference meteorological forcing: HydroGFD v2
- 2. Dynamic seasonal forecasting: ECMWF SEAS5 (bias-adjusted), ESP
- 3. Model initialization: 1st of every month, weekly aggregations
- 4. Forecast horizon: 7 months ahead
- 5. Performance metric: Continuous Ranked Probability Score (CRPS)
- 6. Skill metric: Continuous Ranked Probability Skill Score (CRPSS)

Results 1: The quality of seasonal forecasts

Forecast sys: SEAS5+noDA, BM: observed climatology Generally high skill for all initialization months May-Jul initialization skills lower large Q measurement errors? model process representation?

Results 2a: The value of data assimilation

Forecast sys: SEAS5+DA; BM: SEAS5+noDA Highest skill in Winter and Spring Large spreads in spring and summer values: Q flood measurement errors?

Results 2b: The persistence of data assimilation

Different between assimilations and seasons Persistence longest in winter and shortest in summer Short summer values: snow depletion, Q errors?

Results 3: Relative importance of DA

DA: winter and spring; MF: autumn and summer SEAS5 MF superior to ESP except in spring and autumn

Conclusions

- 1. The assimilation of EO datasets generally improves the initial hydrological conditions and hence the forecasts at short lead times (lead-week 0). However, the added value from EO assimilation depends on the assimilated variable and the season.
- The impact of data assimilation (in terms of persistence) varies between the variables and seasons. In particular, FSC, AET and reservoir inflow have the longest persistence during spring
- 3. Overall, the data assimilation (hence the improvements in initial hydrological conditions) have higher impact on seasonal streamflow forecasts than the meteorological forcing.

References

- Musuuza, J.L.; Gustafsson, D.; Pimentel, R.; Crochemore, L.; Pechlivanidis, I. Impact of Satellite and In Situ Data Assimilation on Hydrological Predictions. Remote Sens. 2020, 12, 811. doi:10.3390/rs12050811
- Musuuza, J.L.; Crochemore, L.; Pechlivanidis, I. Evaluation of Earth Observations and In Situ Data Assimilation for Seasonal Hydrological Forecasting, Water Resour. Res. 2023. doi:10.1029/2022WR033655

